首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Méchali  F Méchali  R A Laskey 《Cell》1983,35(1):63-69
The effect of the tumor promoter TPA on the control of DNA replication was assayed by following the regulated replication of DNA microinjected into eggs of the frog Xenopus laevis. TPA increases the amount of replication of injected DNA. Both initiation of replication on parental DNA molecules and reinitiation on previously replicated molecules are stimulated. Interaction with the external membrane appears necessary since injections of high concentrations of TPA into the egg are ineffective, whereas nM concentrations are active in the external medium. Related molecules that lack tumor promoting activity do not affect DNA replication. The effect of TPA on DNA replication was detectable only after the first cell cycle, and TPA cannot induce replication in oocytes, the quiescent stage which precedes the egg. When protein synthesis is inhibited TPA still increases initiation of replication, but does not allow detectable reinitiation cycles. The results suggest that interaction of TPA with the cell membrane is sufficient to increase the efficiency of replication initiation by a mechanism that does not require illegitimate reinitiation within a single cell cycle.  相似文献   

2.
Cell cycle-dependent phosphorylation of simian virus 40 (SV40) large tumor antigen (T-ag) on threonine 124 is essential for the initiation of viral DNA replication. A T-ag molecule containing a Thr-->Ala substitution at this position (T124A) was previously shown to bind to the SV40 core origin but to be defective in DNA unwinding and initiation of DNA replication. However, exactly what step in the initiation process is defective as a result of the T124A mutation has not been established. Therefore, to better understand the control of SV40 replication, we have reinvestigated the assembly of T124A molecules on the SV40 origin. Herein it is demonstrated that hexamer formation is unaffected by the phosphorylation state of Thr 124. In contrast, T124A molecules are defective in double-hexamer assembly on subfragments of the core origin containing single assembly units. We also report that T124A molecules are inhibitors of T-ag double hexamer formation. These and related studies indicate that phosphorylation of T-ag on Thr 124 is a necessary step for completing the assembly of functional double hexamers on the SV40 origin. The implications of these studies for the cell cycle control of SV40 DNA replication are discussed.  相似文献   

3.
In productively infected cells, a fraction of large-tumor antigen (T antigen) is tightly bound to replicating simian virus 40 (SV40) minichromosomes and does not dissociate at salt concentrations of greater than 1 M NaCl. We present electronmicrograms demonstrating the presence of T antigen on the replicated sections of replicating SV40 minichromosomes. We also show that the fraction of tightly bound T antigen is recognized by antibodies from mouse tumor serum and, more specifically, by a particular T-antigen-specific monoclonal antibody, PAb 1630. A second T-antigen-specific monoclonal antibody, PAb 101, does not react with the T-antigen fraction remaining on replicating SV40 chromatin at high salt concentrations. We used an in vitro replication system which allows, via semiconservative DNA replication, the completion of in vivo-initiated replicative intermediate DNA molecules. We show that monoclonal antibody PAb 1630, but not monoclonal antibody PAb 101, inhibits viral DNA replication. We discuss the possibility that SV40 T antigen may play a role in chain elongation during SV40 chromatin replication.  相似文献   

4.
The initiation of simian virus 40 (SV40) DNA replication is regulated by the phosphorylation state of the viral initiator protein, large T antigen. We describe the purification from HeLa cell nuclei of a 35-kDa serine/threonine protein kinase that phosphorylates T antigen at sites that are phosphorylated in vivo and thereby inhibits its ability to initiate SV40 DNA replication. The inhibition of both origin unwinding and DNA replication by the kinase is reversed by protein phosphatase 2A. As determined by molecular weight, substrate specificity, autophosphorylation, immunoreactivity, and limited sequence analysis, this kinase appears to be identical to casein kinase I, a ubiquitous serine/threonine protein kinase that is closely related to a yeast kinase involved in DNA metabolism. The HeLa cell phosphorylation cycle that controls the initiation of SV40 DNA replication may also play a role in cellular DNA metabolism.  相似文献   

5.
We have examined the capacity of Xenopus laevis eggs to support replication of microinjected SV40 DNA. As previously reported, microinjected DNA undergoes semi-conservative replication. Unlabeled SV40 DNA was microinjected with [3H]dTTP and, after a 3 h incubation period, the DNA was recovered and adsorbed to BND-cellulose. Elution with an NaCl gradient removes molecules that are entirely double-stranded but not those with single-stranded regions. The latter DNA population is eluted with caffeine. The radioactive DNA that eluted with NaCl was comprised mostly of supercoiled and open circular SV40 DNAs. The radioactive DNA eluted with caffeine was comprised mainly of endogenous DNA but also contained replicative forms of SV40 DNA. Analysis of SV40 DNA replication intermediates by electron microscopy revealed mainly Cairn's forms of varying degrees of maturation. Digestion with BamH1, which cleaves SV40 DNA almost opposite the normal viral replication origin, indicated that SV40 DNA microinjected into frog eggs does not initiate DNA synthesis at its normal initiation site nor at any other obvious preferred site. Rather, it appears that when this template is injected into activated Xenopus eggs, replication may initiate at random.  相似文献   

6.
Chromosome replication in cell-free systems from Xenopus eggs   总被引:1,自引:0,他引:1  
Cell-free systems from eggs of the frog Xenopus laevis are able to perform most of the acts of eukaryotic chromosome replication in vitro. This now includes the crucial regulatory step of initiation, which had only been achieved for viral systems previously. Purified DNA or nuclei are able to initiate and complete semi-conservation replication in egg extracts in vitro (Blow & Laskey, Cell 47, 557-587 (1986). Replication does not require specialized DNA sequences either in vitro or in microinjected eggs, but in both systems large templates replicate more efficiently than small templates. In some cases replication can re-initiate, excluding the possibility that replication is primed by preexisting primers in the template preparations. When nuclei are replicated in vitro, only one round of replication is observed in a single incubation resembling the single round of replication observed for purified DNA after micro-injection. The mechanism that prevents re-initiation of replication within a single cell cycle is discussed and certain models are eliminated. Nucleosome assembly from histones and DNA has also been studied in cell-free systems from Xenopus eggs. Fractionation has led to the identification of two acidic proteins called nucleoplasmin and N1, which bind histones and transfer them to DNA. The sequences of both proteins have been determined by cDNA cloning and sequencing. Both proteins are found as complexes with histones in eggs.  相似文献   

7.
When mammalian cells are irradiated with ultraviolet light, semiconservative DNA replication is inhibited and the length of newly synthesized daughter strands is reduced. We have used the simian virus 40 (SV40) viral system to examine the molecular mechanism by which this inhibition of DNA replication occurs immediately following ultraviolet irradiation. We tested two models for DNA replication-inhibition by using a procedure first developed by Danna, K. J., and D. Nathans (1972, Proc. Natl. Acad. Sci. USA, 69:3097-3100) in which the distribution of 3H-label in segments of newly completed SV40 form-I molecules is measured after short pulse labeling with 3H-thymidine. Our experimental results were compared with those predicted by mathematical models that describe two possible molecular mechanisms of replication inhibition. Our data are best fit by a "blockage" model in which any pyrimidine dimer encountered by the replication fork prevents complete replication of the SV40 genome. An alternative model called "slowdown" in which DNA damage causes a generalized slowdown of replication fork movement on all genomes has more adjustable parameters but does not fit the data as well as the blockage model.  相似文献   

8.
9.
The Xenopus early embryonic cell cycle consists of rapid oscillations between mitosis and DNA synthesis. We used ubiquitin (Ub)-dependent proteolysis inhibitors to determine whether Ub-mediated proteolysis regulates the initiation of DNA replication in Xenopus egg extract. Methylated Ub, a chemically modified Ub that cannot form chains, and S5a, a Ub chain-binding subunit of the 26S proteasome, were added to extract at concentrations known to inhibit cyclin B proteolysis and their effects on cell cycle progression and DNA replication were examined. DNA replication initiated concomitant with controls and proceeded in a semiconservative fashion in the presence of both methylated Ub and S5a. However, mitotic progression was halted, showing that the inhibitors were functional. We conclude that initiation of DNA replication is not regulated by Ub-dependent proteolysis in the early Xenopus cell cycle.  相似文献   

10.
We have investigated the mechanism which prevents reinitiation of DNA replication within a single cell cycle by exploiting the observation that intact G2 HeLa nuclei do not replicate in Xenopus egg extract, unless their nuclear membranes are first permeabilized (Leno et al., 1992). We have asked if nuclear membrane permeabilization allows escape of a negative inhibitor from the replicated nucleus or entry of a positive activator as proposed in the licensing factor hypothesis of Blow and Laskey (1988). We have distinguished these possibilities by repairing permeabilized nuclear membranes after allowing soluble factors to escape. Membrane repair of G2 nuclei reverses the effects of permeabilization arguing that escape of diffusible inhibitors is not sufficient to allow replication, but that entry of diffusible activators is required. Membrane repair has no significant effect on G1 nuclei. Pre-incubation of permeable G2 nuclei in the soluble fraction of egg extract before membrane repair allows semiconservative DNA replication of these nuclei when incubated in complete extract. Addition of the same fraction after membrane repair has no effect. Our results provide direct evidence for a positively acting "licensing" activity which is excluded form the interphase nucleus by the nuclear membrane. Nuclear membrane permeabilization and repair can be used as an assay for licensing activity which could lead to its purification and subsequent analysis of its action within the nucleus.  相似文献   

11.
12.
Sequence-dependent DNA replication in preimplantation mouse embryos.   总被引:16,自引:7,他引:9       下载免费PDF全文
Circular, double-stranded DNA molecules were injected into nuclei of mouse oocytes and one- or two-cell embryos to determine whether specific sequences were required to replicate DNA during mouse development. Although all of the injected DNAs were stable, replication of plasmid pML-1 DNA was not detected unless it contained either polyomavirus (PyV) or simian virus 40 (SV40) DNA sequences. Replication occurred in embryos, but not in oocytes. PyV DNA, either alone or recombined with pML-1, underwent multiple rounds of replication to produce superhelical and relaxed circular monomers after injection into one- or two-cell embryos. SV40 DNA also replicated, but only 3% as well as PyV DNA. Coinjection of PyV DNA with either pML-1 or SV40 had no effect on the replicating properties of the three DNAs. These results are consistent with a requirement for specific cis-acting sequences to replicate DNA in mammalian embryos, in contrast to sequence-independent replication of DNA injected into Xenopus eggs. Furthermore, PyV DNA replication in mouse embryos required PyV large T-antigen and either the alpha-beta-core or beta-core configuration of the PyV origin of replication. Although the alpha-core configuration replicated in differentiated mouse cells, it failed to replicate in mouse embryos, demonstrating cell-specific activation of an origin of replication. Replication or expression of PyV DNA interfered with normal embryonic development. These results reveal that mouse embryos are permissive for PyV DNA replication, in contrast to the absence of PyV DNA replication and gene expression in mouse embryonal carcinoma cells.  相似文献   

13.
E H Wang  P N Friedman  C Prives 《Cell》1989,57(3):379-392
We have characterized the effect of murine p53 on SV40 DNA replication in vitro. Purified wild-type murine p53 dramatically inhibited the ability of SV40 T antigen to mediate the replication of a plasmid bearing the viral origin (ori-DNA) in vitro. In contrast, polyoma ori-DNA replication in vitro was unaffected by p53. Surprisingly, both unbound p53 and SV40 T antigen-bound p53 were equally detrimental to SV40 ori-DNA replication. Thus, p53 interferes with interactions between T antigen molecules that are required for DNA synthesis. p53 inhibited the binding to and subsequent unwinding of the SV40 origin by T antigen and thus selectively blocked the initial stages of ori-DNA replication. In contrast to the nononcogenic wild-type murine p53, high concentrations of a mutant transforming p53 failed to block SV40 ori-DNA replication in vitro. These observations may provide insight into a possible role for p53 in the cell.  相似文献   

14.
The cell cycle is driven by the sequential activation of a family of cyclin-dependent kinases (CDK) in association with cyclins. In mammalian cells the timing of activation of cyclin A-associated kinase activity coincides with the onset of DNA synthesis in S-phase. Using in vitro replication of SV40 origin-containing DNA as a model system, we have analyzed the proteins associated with DNA during initiation of DNA replication in S-phase cell extracts. This analysis reveals that, in addition to replication initiation proteins, cyclin A and cdk2 are also specifically associated with DNA. The association of cyclin A and cdk2 with DNA during initiation is cell cycle regulated and occurs specifically in the presence of SV40 origin-containing plasmid and SV40 T antigen (the viral replication initiator protein). The interactions among proteins involved in initiation play an important role in DNA replication. We therefore investigated the ability of cyclin A and cdk2 to associate with replication initiation proteins. Under replication initiation conditions, cyclin A and cdk2 from S-phase extracts specifically associate with SV40 T antigen. Further, the interaction of cyclin A-cdk2 with SV40 T antigen is mediated via cyclin A, and purified recombinant cyclin A associates directly with SV40 T antigen. Taken together, our results suggest that cyclin A and cdk2 are components of the SV40 replication initiation complex, and that protein-protein interactions between cyclin A-cdk2 and T antigen may facilitate the association of cyclin A-cdk2 with the complex. Received: 30 July 1996; in revised form: 25 September 1996 / Accepted: 8 October 1996  相似文献   

15.
We have characterized the biochemical activities of purified polyoma (Py) large T antigen (T Ag) that was capable of mediating the replication of a plasmid containing the Py origin (ori(+) DNA) in mouse cell extracts. We report here that like the T Ag encoded by simian virus 40 (SV40), Py T Ag has DNA helicase and double-stranded DNA fragment unwinding activities. Py T Ag displaced DNA fragments greater than 1,600 nucleotides which were annealed to complementary sequences in single-stranded M13 by translocating in the 3' to 5' direction. Both helicase and double-stranded DNA fragment unwinding reactions were completely dependent upon NTP hydrolysis, displaying a strong preference for ATP and dATP. At low T Ag concentrations, significantly more Py ori(+) DNA fragment was unwound compared with a fragment lacking the replication origin. However, at higher ratios of Py T Ag to DNA, equivalent to those used in replication reactions, unwinding of both ori-containing and -lacking fragments was equally efficient. This is in contrast to SV40 T Ag which exhibited a more stringent requirement for SV40 origin sequences under similar conditions. Furthermore, some of the nucleotides that supported the helicase and unwinding activities of Py T Ag were different from those for the same SV40 T Ag reactions. We have also observed that in contrast to the very poor replication of linear SV40 ori(+) DNA by SV40 T Ag in human cell extracts, linear Py ori(+) DNA was replicated efficiently in mouse cell extracts by Py T Ag. However, despite the fact that linear Py ori(+), SV40 ori(+), and ori(-) DNA fragments could be unwound with comparable efficiency by Py T Ag, only fragments containing the Py replication origin were replicated in vitro. These results suggest that the initiation of DNA synthesis at the Py origin of replication requires features in addition to unwinding of the template.  相似文献   

16.
Rolling circle-type molecules were found in polyoma virus-infected cells after inhibition of DNA synthesis with 2'-deoxy-2'-azidocytidine. The circular DNA molecules were always relaxed and of polyoma length. Most of the attached tails were less than two times the length of the polyoma genome, but tails with a length of up to 4.75 times the genome were also found. After cleavage of the total pool of replicating molecules with either endo R.EcoRI or endo R.BamI, Y-shaped molecules with replicated portions of various lengths were generated from rolling circle-type molecules. Moreover, after cleavage, Y-shaped molecules with three unequal arms were found, which could be explained as derived from the tail in rolling circle-type molecules starting from the normal origin, i.e., 29% from the endo R.EcoRI cleavage site. Rolling circle-type molecules were also found during a normal, noninhibited infection cycle. In such cells, a relatively higher frequency of rolling circle-type molecules was observed late during infection. Compared with control cultures, cultures inhibited with 2'-deoxy-2'-azidocytidine showed a greater amount of rolling circle-type molecules relative to normal replicative intermediates. 2'-Deoxy-2'-azidocytidine has previously been shown to inhibit the initiation of new rounds of replication; thus, the result obtained here indicates that a rolling circle-type mechanism is independent of the reinitiation of DNA synthesis.  相似文献   

17.
We recently described a soluble cell-free system derived from monkey cells that is capable of replicating exogenous plasmid DNA molecules containing the simian virus 40 (SV40) origin of replication (J.J. Li, and T.J. Kelly, Proc. Natl. Acad. Sci. U.S.A. 81:6973-6977, 1984). Replication in the system is completely dependent upon the addition of the SV40 large T antigen. In this report we describe additional properties of the in vitro replication reaction. Extracts prepared from cells of several nonsimian species were tested for the ability to support origin-dependent replication in the presence of T antigen. The activities of extracts derived from human cell lines HeLa and 293 were approximately the same as those of monkey cell extracts. Chinese hamster ovary cell extracts also supported SV40 DNA replication in vitro, but the extent of replication was approximately 1% of that observed with human or monkey cell extracts. No replication activity was detectable in extracts derived from BALB/3T3 mouse cells. The ability of these extracts to support replication in vitro closely parallels the ability of the same cells to support replication in vivo. We also examined the ability of various DNA molecules containing sequences homologous to the SV40 origin to serve as templates in the cell-free system. Plasmids containing the origins of human papovaviruses BKV and JCV replicated with an efficiency 10 to 20% of that of plasmids containing the SV40 origin. Plasmids containing Alu repeat sequences (BLUR8) did not support detectable DNA replication in vitro. Circular DNA molecules were found to be the best templates for DNA replication in the cell-free system; however, linear DNA molecules containing the SV40 origin also replicated to a significant extent (10 to 20% of circular molecules). Finally, electron microscopy of replication intermediates demonstrated that the initiation of DNA synthesis in vivo takes place at a unique site corresponding to the in vivo origin and that replication is bidirectional. These findings provide further evidence that replication in the cell-free system faithfully mimics SV40 DNA replication in vivo.  相似文献   

18.
An in vitro system to study carcinogen-induced amplification in simian virus 40 (SV40)-transformed Chinese hamster (CO60) cells is described. SV40 amplification in this system resembled in many aspects the viral overreplication observed in drug-treated CO60 cells. Cytosolic extracts from N-methyl-N'-nitro-N-nitrosoguanidine-treated cells supported de novo DNA synthesis in the presence of excess exogenous T antigen and the SV40-containing plasmid pSVK1. The pattern of viral replication in these extracts was unique, since only the 2.4-kilobase-pair region spanning the origin was overreplicated, whereas distal sequences were not replicated significantly. Extracts from control cells supported only marginal levels of replication. In HeLa extracts, complete SV40 DNA molecules were replicated efficiently. The overreplication of the origin region in CO60 cell extracts was bidirectional and symmetrical. A fraction of the newly synthesized DNA molecules underwent a second round of replication, yielding MboI-sensitive fragments representing the 2.4-kilobase-pair region around the origin. The mechanisms controlling the amplification of the viral origin region, the nature of the cellular factors induced in the carcinogen-treated cells, and their putative association with general drug-induced SOS-like responses are discussed.  相似文献   

19.
Mature SV40 DNA synthesized for different periods of time either in isolated nuclei or in intact cells was highly purified and then digested with restriction endonucleases in order to relate the time of synthesis of newly replicated viral DNA to its location in the genome. Replication in nuclei supplemented with a cytosol fraction from uninfected cells was a faithful continuation of the bidirectional process observed in intact cells, but did not exhibit significant initiation of new replicons. SV40 DNA replication in cells at 37 degrees C proceeded at about 145 nucleotides/min per replication fork. In the absence of cytosol, when DNA synthesis was limited and joining of Okazaki fragments was retarded, bidirectional SV40 DNA replication continued into the normal region where separation yeilded circular duplex DNA molecules containing one or more interruptions in the nascent DNA strands. In the presence of cytosol, this type of viral DNA was shown to be a precursor of covalently closed, superhelical SV40 DNA, the mature from of viral DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号