首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we studied effects of phosphonium dications P2C5 and P2C10 on bilayer planar phospholipid membrane (BLM) and rat liver mitochondria. In line with our previous observations [M.F. Ross, T. Da Ros, F.H. Blaikie, T.A. Prime, C.M. Porteous, I.I. Severina, V.P. Skulachev, H.G. Kjaergaard, R.A. Smith, M.P. Murphy, Accumulation of lipophilic dications by mitochondria and cells, Biochem. J. 400 (2006) 199-208], we showed both P2C5 and P2C10 are cationic penetrants for BLM. They generated transmembrane diffusion potential (ΔΨ), the compartment with a lower dication concentration positive. However, the ΔΨ values measured proved to be lower that the Nernstian. This fact could be explained by rather low BLM conductance for the cations at their small concentrations and by induction of some BLM damage at their large concentrations. The damage in question consisted in appearance of non-Ohmic current/voltage relationships which increased in time. Such a non-Ohmicity was especially strong at ΔΨ > 100 mV. Addition of penetrating lipophilic anion TPB, which increases the BLM conductance for lipophilic cations, yielded the Nernstian ΔΨ, i.e. 30 mV per ten-fold dication gradient. In the State 4 mitochondria, dications stimulated respiration and lowered ΔΨ. Moreover, they inhibited the State 3 respiration with succinate or glutamate and malate (but not with TMPD and ascorbate) in an uncoupler-sensitive fashion. Effect on the in State 4 mitochondria, similarly to that on BLM, was accounted for by a time-dependent membrane damage. On the other hand, the State 3 effect was most probably due to inhibition of the respiratory chain Complex I and/or Complex III. The damaging and inhibitory activities of lipophilic dications should be taken into account when one considers a possibility to use them as a vehicle to target antioxidants or other compounds to mitochondria.  相似文献   

2.
Lipophilic monocations can pass through phospholipid bilayers and accumulate in negatively-charged compartments such as the mitochondrial matrix, driven by the membrane potential. This property is used to visualize mitochondria, to deliver therapeutic molecules to mitochondria and to measure the membrane potential. In theory, lipophilic dications have a number of advantages over monocations for these tasks, as the double charge should lead to a far greater and more selective uptake by mitochondria, increasing their therapeutic potential. However, the double charge might also limit the movement of lipophilic dications through phospholipid bilayers and little is known about their interaction with mitochondria. To see whether lipophilic dications could be taken up by mitochondria and cells, we made a series of bistriphenylphosphonium cations comprising two triphenylphosphonium moieties linked by a 2-, 4-, 5-, 6- or 10-carbon methylene bridge. The 5-, 6- and 10-carbon dications were taken up by energized mitochondria, whereas the 2- and 4-carbon dications were not. The accumulation of the dication was greater than that of the monocation methyltriphenylphosphonium. However, the uptake of dications was only described by the Nernst equation at low levels of accumulation, and beyond a threshold membrane potential of 90-100 mV there was negligible increase in dication uptake. Interestingly, the 5- and 6-carbon dications were not accumulated by cells, due to lack of permeation through the plasma membrane. These findings indicate that conjugating compounds to dications offers only a minor increase over monocations in delivery to mitochondria. Instead, this suggests that it may be possible to form dications within mitochondria that then remain within the cell.  相似文献   

3.
The relationship is investigated between mitochondrial membrane potential (Delta Psi(M)), respiration and cytochrome c (cyt c) release in single neural bcl-2 transfected cells (GT1-7bcl-2) or GT1-7puro cells during apoptosis induced by staurosporine (STS). Bcl-2 inhibited the mitochondrial release of cyt c and apoptosis. Three different cell responses to STS were identified in GT1-7puro cells: (i) neither Delta Psi(M) nor cyt c were significantly affected; (ii) a decrease in Delta Psi(M) was accompanied by a complete release of cyt c; or (iii) cyt c release occurred independently of a loss of Delta Psi(M). The endogenous inner membrane proton leak of the in situ mitochondria, monitored by respiration in the presence of oligomycin, was increased by STS by 92% in puro cells, but by only 23% in bcl-2 cells. STS decreased respiratory capacity, in the presence of protonophore, by 31% in puro cells and by 20% in bcl-2 cells. In the absence of STS, oligomycin hyperpolarized mitochondria within both puro and bcl-2-transfected cells, indicating that the organelles were net generators of ATP. However after 15 h exposure to STS oligomycin rapidly collapsed residual mitochondrial polarization in the puro cells, indicating that Delta Psi(M) had been maintained by ATP synthase reversal. bcl-2 cells in contrast, maintained Delta Psi(M) until protonophore was added. These results indicate that the maintenance of Delta Psi(M) following release of cyt c may be a consequence of ATP synthase reversal and cytoplasmic ATP hydrolysis in STS-treated GT1-7 cells.  相似文献   

4.
During apoptosis, the permeabilization of the mitochondrial outer membrane allows the release of cytochrome c, which induces caspase activation to orchestrate the death of the cell. Mitochondria rapidly lose their transmembrane potential (Delta Psi m) and generate reactive oxygen species (ROS), both of which are likely to contribute to the dismantling of the cell. Here we show that both the rapid loss of Delta Psi m and the generation of ROS are due to the effects of activated caspases on mitochondrial electron transport complexes I and II. Caspase-3 disrupts oxygen consumption induced by complex I and II substrates but not that induced by electron transfer to complex IV. Similarly, Delta Psi m generated in the presence of complex I or II substrates is disrupted by caspase-3, and ROS are produced. Complex III activity measured by cytochrome c reduction remains intact after caspase-3 treatment. In apoptotic cells, electron transport and oxygen consumption that depends on complex I or II was disrupted in a caspase-dependent manner. Our results indicate that after cytochrome c release the activation of caspases feeds back on the permeabilized mitochondria to damage mitochondrial function (loss of Delta Psi m) and generate ROS through effects of caspases on complex I and II in the electron transport chain.  相似文献   

5.
The cytotoxic effect of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) is believed to be associated with a compromise in cellular energy arising as a consequence of its persistent inhibition of mitochondrial respiration. MPP+ is a rather weak inhibitor of electron transport, but it undergoes passive accumulation inside actively respiring mitochondria in response to the transmembrane electrochemical potential gradient. In order to test the prediction that dicationic analogs of MPP+ might be concentrated to a much greater extent and thereby exert especially potent inhibition of respiration on the intact organelle, we synthesized four differently spaced bis-pyridines, each in neutral, monocationic, and dicationic forms, and evaluated their inhibitory activities in intact mitochondria and in electron transport particles (ETP). Compared to the neutrals, the monocations and especially the dications exhibit reduced inhibition in ETP, but the inhibition in mitochondria is enhanced selectively for the cationic inhibitors presumably on account of their accumulation in the mitochondrial matrix. This enhancement is limited by the relatively poor ability of the cationic bis-pyridines to enter mitochondria, as judged from experiments which evaluated the rate of onset of inhibition (without preincubation), in the absence and presence of tetraphenylborate (TPB-). The dications appear to be transported less well than the monocations, and only the most lipophilic dication exhibited a substantially greater accumulation-dependent enhancement of inhibitory activity on mitochondria than did the corresponding monocation. The compounds studied here constitute a novel class of respiratory chain probes which may be useful for a variety of studies on mitochondria.  相似文献   

6.
In agreement with classic studies, succinate-supplemented rat and pigeon heart and nonsynaptic brain mitochondrial free radical production is stopped by ADP additions causing the stimulation of respiration from State 4 to State 3. Nevertheless, with Complex I-linked substrates, mitochondria produce free radicals in State 3 at rates similar or somewhat higher than during resting respiration. The absence of sharp increases in free radical production during intense respiration is possible due to strong decreases of free radical leak in State 3. The results indicate that Complex I is the main mitochondrial free radical generator in State 3, adding to its already known important generation of active oxygen species in State 4. The observed rate of mitochondrial free radical production with Complex I-linked substrates in the active State 3 can help to explain two paradoxes: (a) the lack of massive muscle oxidative damage and shortening of life span due to exercise, in spite of up to 23-fold increases of oxygen consumption together with the very low levels of antioxidants present in heart, skeletal muscle, and brain; (b) the presence of some degree of oxidative stress during exercise and hyperactivity in spite of the stop of mitochondrial free radical production by ADP with succinate as substrate.  相似文献   

7.
Oxidative phosphorylation of isolated ratskeletal muscle mitochondria after exposure to lactic acidosis ineither phosphorylating or nonphosphorylating states has been evaluated.Mitochondrial respiration and transmembrane potential(m) weremeasured with pyruvate and malate as the substrates. The addition oflactic acid decreased the pH of the reaction medium from 7.5 to 6.4. When lactic acid was added to nonphosphorylating mitochondria, thesubsequent maximal ADP-stimulated respiration decreased by 27%compared with that under control conditions(P < 0.05), and the apparentMichaelis-Menten constant(Km) for ADPdecreased to 10 µM vs. 20 µM (P < 0.05) in controls. In contrast, maximal respiration and ADPsensitivity were not affected when mitochondria were exposed toacidosis during active phosphorylation in state 3. Acidosissignificantly increased mitochondrial oxygen consumption in state 4 (post-state 3), irrespective of when acidosis was induced. This effectof acidosis was attenuated in the presence of oligomycin. The additionof lactic acid during state 4 respiration decreased m by 19%. The ratio betweenadded ADP and consumed oxygen (P/O) was close to the theoretical valueof 3 in all conditions. The addition of potassium lactate during state3 (i.e., medium pH unchanged) had no effect on the parameters measured.It is concluded that lactic acidosis has different effects when inducedon nonphosphorylating vs. actively phosphorylating mitochondria. On thebasis of these results, we suggest that the influence of lacticacidosis on muscle aerobic energy production depends on thephysiological conditions at the onset of acidity.

  相似文献   

8.
The cytotoxicity of 1-methyl-4-phenylpyridinium (MPP+) is believed to arise as a consequence of its time- and energy-dependent accumulation inside mitochondria, followed by inhibition of electron transport at Complex I of the respiratory chain. Consistent with our proposal that the accumulation of MPP+ represents a passive Nernstian transport into mitochondria in response to the transmembrane electrochemical potential gradient, tetraphenylborate (TPB-) was found to accelerate the onset of the respiratory inhibition by MPP+ on intact mitochondria. Moreover, the ultimate level of inhibition reached was unexpectedly also increased. The latter is now explained by our finding that TPB- elicits a 12-fold enhancement of MPP+ inhibition of respiration in electron transport particles. It is suggested that TPB- facilitates access of MPP+ to its intramembrane site of inhibitory action in Complex I.  相似文献   

9.
1. 1. The development of thermotolerance has been shown to protect blowfly flight muscle mitochondrial function from damage resulting from an LD50 in vivo heat dose.
2. 2. The principal sites of the damage have been studied using specific inhibitors of the respiratory chain, rotenone and antimycin A, together with substrates that stimulate respiration through the different complexes.
3. 3. Complex I was identified as the primary site for heat damage. State III respiration was inhibited following the LD50 in vivo heat dose, and uncoupling with FCCP did not restore respiration to control levels, indicating that the respiratory enzymes were inactivated. The development of thermotolerance protected this site from heat damage.
4. 4. In contrast, G3-P stimulated respiration was the same in control, LD50 in vivo treated controls and LD50, in vivo treated thermotolerant mitochondria, and significantly higher than state III respiration of LD50 in vivo treated controls. This suggested that respiration through G3-P dehydrogenase, Co enzyme Q and Complex III is not damaged. However, as G3-P stimulated respiration of coupled mitochondria from LD50 in-vivo treated flies was markedly reduced (El-Wadawi and Bowler, 1995. J. exp. Biol. 198: 2413–2421), phosphorylation at complex III may be inhibited also.
5. 5. Ferrocyanide stimulated respiration through cytochrome c-Complex IV was also inhibited in LD50 in vivo treated flies, as compared with unheated control mitochondria. However, thermotolerance protected this site also from heat damage.
  相似文献   

10.
Peroxisome proliferators have been found to induce hepatocarcinogenesis in rodents, and may cause mitochondrial damage. Consistent with this, clofibrate increased hepatic mitochondrial oxidative DNA and protein damage in mice. The present investigation aimed to study the mechanism by which this might occur by examining the effect of clofibrate on freshly isolated mouse liver mitochondria and a cultured hepatocyte cell line, AML-12. Mitochondrial membrane potential (Delta Psi(m)) was determined by using the fluorescent dye 5,5',6,6'-tetrachloro-1,1', 3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1) and tetramethylrhodamine methyl ester (TMRM). Application of clofibrate at concentrations greater than 0.3 mM rapidly collapsed the Delta Psi(m) both in liver cells and in isolated mitochondria. The loss of Delta Psi(m) occurred prior to cell death and appeared to involve the mitochondrial permeability transition (MPT), as revealed by calcein fluorescence studies and the protective effect of cyclosporin A (CsA) on the decrease in Delta Psi(m). Levels of reactive oxygen species (ROS) were measured with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (DCFDA) and dihydrorhodamine 123 (DHR123). Treatment of the hepatocytes with clofibrate caused a significant increase in intracellular and mitochondrial ROS. Antioxidants such as vitamin C, deferoxamine, and catalase were able to protect the cells against the clofibrate-induced loss of viability, as was CsA, but to a lesser extent. These results suggest that one action of clofibrate might be to impair mitochondrial function, so stimulating formation of ROS, which eventually contribute to cell death.  相似文献   

11.
Coupled rat heart mitochondria produce externally hydrogen peroxide at the rates which correspond to about 0.8 and 0.3% of the total oxygen consumption at State 4 with succinate and glutamate plus malate as the respiratory substrates, respectively. Stimulation of the respiratory activities by ADP (State 4–State 3 transition) decreases the succinate- and glutamate plus malate-supported H2O2 production 8- and 1.3-times, respectively. NH4+ strongly stimulates hydrogen peroxide formation with either substrate without any effect on State 4 and/or State 3 respiration. Rotenone-treated, alamethicin-permeabilized mitochondria catalyze NADH-supported H2O2 production at a rate about 10-fold higher than that seen in intact mitochondria under optimal (State 4 succinate-supported respiration in the presence of ammonium chloride) conditions. NADH-supported hydrogen peroxide production by the rotenone-treated mitochondria devoid of a permeability barrier for H2O2 diffusion by alamethicin treatment are only partially (~ 50%) sensitive to the Complex I NADH binding site-specific inhibitor, NADH-OH. The residual activity is strongly (~ 6-fold) stimulated by ammonium chloride. NAD+ inhibits both Complex I-mediated and ammonium-stimulated H2O2 production. In the absence of stimulatory ammonium about half of the total NADH-supported hydrogen peroxide production is catalyzed by Complex I. In the presence of ammonium about 90% of the total hydrogen peroxide production is catalyzed by matrix located, ammonium-dependent enzyme(s).  相似文献   

12.
Deficiency of complex I in the respiratory chain and oxidative stress induced by hydrogen peroxide occur simultaneously in dopaminergic neurones in Parkinson's disease. Here we demonstrate that the membrane potential of in situ mitochondria (Delta Psi m), as measured by the fluorescence change of JC-l (5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbezimidazolyl-carbocyani ne iodide), collapses when isolated nerve terminals are exposed to hydrogen peroxide (H(2)O(2), 100 and 500 microM) in combination with the inhibition of complex I by rotenone (5 nM-1 microM). H(2)O(2) reduced the activity of complex I by 17%, and the effect of H(2)O(2) and rotenone on the enzyme was found to be additive. A decrease in Delta Psi m induced by H(2)O(2) was significant when the activity of complex I was reduced to a similar extent as found in Parkinson's disease (26%). The loss of Delta Psi m observed in the combined presence of complex I deficiency and H(2)O(2) indicates that when complex I is partially inhibited, mitochondria in nerve terminals become more vulnerable to H(2)O(2)-induced oxidative stress. This mechanism could be crucial in the development of bioenergetic failure in Parkinson's disease.  相似文献   

13.
The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H+ permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663–668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6 μM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles.  相似文献   

14.
Aging is associated with a decline in performance in many organs and loss of physiological performance can be due to free radicals. Mitochondria are incompletely coupled: during oxidative phosphorylation some of the redox energy is dissipated as natural proton leak across the inner membrane. To verify whether proton leak occurs in mitochondria during aging, we measured the mitochondrial respiratory chain activity, membrane potential and proton leak in liver, kidneys and heart of young and old rats. Mitochondria from old rats showed normal rates of Complex I and Complex II respiration. However, they had a lower membrane potential compared to mitochondria from younger rats. In addition, they exhibited an increased rate of proton conductance which partially dissipated the mitochondrial membrane potential when the rate of electron transport was suppressed. This could compromise energy homeostasis in aging cells in conditions that require additional energy supply and could minimize oxidative damage to DNA.  相似文献   

15.
16.
New and improved methods to determine the membrane potential (Delta Psi) and the Delta pH in methanogenic archaea were developed and tested in Methanobacterium thermoautotrophicum strain Delta H. The Delta pH measurements took advantage of the pH-dependent fluorescence properties of coenzyme F(420), the major intracellular electron carrier in the organism. The protonophore p-nitrophenol did not show any interference with the F(420) fluorescence spectra and was therefore suitable to equalize internal and external pH. The method developed allowed the determination of the intracellular pH with an error of less than 0.05 pH units.Membrane potentials could easily be assessed using the fluorescent probe bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC(4)(3)) with an accuracy of approximately 10 mV.Both methods were tested with cell suspensions of M. thermoautrophicum incubated at medium pH values between 5.5 and 8. It was found that Delta Psi and Delta pH values remained constant under these conditions. Membrane potentials were about -160 mV and Delta pH was kept at 0.35 pH units (inside minus outside) resulting in a total proton motive force of about -180 mV (inside negative).  相似文献   

17.
A20668 A, B, and C are polypeptide antibiotics that inhibit phosphorylation of ADP, Mg2t-ATPase, and the ATP-driven transhydrogenase of rat liver submitochondrial particles, but not the purified F1 ATPase. In intact mitochondria, 120668 inhibits uncoupler-induced ATPase, State 3 respiration, and phosphorylation; the A and B forms are approximately equipotent with rutamycin, whereas A20668 C is less effective. Concentrations of A20668 slightly greater than required for complete inhibition of phosphoryl transfer stimulate rapid, uncoupled respiration by mitochondria under State 3 of 4 conditions. A20668 A and B are more effective uncouplers than A20668 C. In the presence of venturicidin or ossamycin, concentrations of A20668, which alone do not uncouple, stimulate oxygen consumption of mitochondria incubated under either State 3 of 4 conditions. A20668 uncoupling is not potentiated by prior inhibition of phosphoryl transfer by venturicidin X, rutamycin, aurovertin, or efrapeptin. A20668 increases mitochondrial permeability to protons in passive swelling experiments where facilitation of proton conductance correlates well with potency to uncouple. A20668 apparently binds initially at a unique locus to inhibit mitochondrial phosphoryl transfer reactions. When this site is saturated, additional antibiotic may uncouple by increasing proton conductance of mitochondria. Binding of venturicidin or ossamycin appears to interfere with the binding of A20668 to its adjacent inhibitory site, thus effectively increasing the concentration of A20668 available to uncouple.  相似文献   

18.
The mitochondrial membrane potential (m) underlies many mitochondrial functions, including Ca2+ influx into the mitochondria, which allows them to serve as buffers of intracellular Ca2+. Spontaneous depolarizations of m, flickers, have been observed in isolated mitochondria and intact cells using the fluorescent cationic lipophile tetramethylrhodamine ethyl ester (TMRE), which distributes across the inner mitochondrial membrane in accordance with the Nernst equation. Flickers in cardiomyocytes have been attributed to uptake of Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptors in focal transients called Ca2+ sparks. We have shown previously that an increase in global Ca2+ in smooth muscle cells causes an increase in mitochondrial Ca2+ and depolarization of m. Here we sought to determine whether flickers in smooth muscle cells are caused by uptake of Ca2+ released focally in Ca2+ sparks. High-speed three-dimensional imaging was used to monitor m in freshly dissociated myocytes from toad stomach that were simultaneously voltage clamped at 0 mV to ensure the cytosolic TMRE concentration was constant and equal to the low level in the bath (2.5 nM). This approach allows quantitative analysis of flickers as we have previously demonstrated. Depletion of SR Ca2+ not only failed to eliminate flickers but rather increased their magnitude and frequency somewhat. Flickers were not altered in magnitude or frequency by ryanodine or xestospongin C, inhibitors of intracellular Ca2+ release, or by cyclosporin A, an inhibitor of the permeability transition pore. Focal Ca2+ release from the SR does not cause flickers in the cells employed here. mitochondria; mitochondrial membrane potential; intracellular calcium; permeability transition pore; sarcoplasmic reticulum  相似文献   

19.
Though extracts of Ginkgo biloba leaves (GBE) have a wide pharmacological application, little is known about GBE effects on mitochondria. In this work, effects of ethanolic GBE on the respiration of isolated rat heart and liver mitochondria were investigated. We found that GBE stimulates the pyruvate + malate-dependent State 2 respiration of heart mitochondria and decreases mitochondrial membrane potential. Uncoupling effect of GBE was found to be due to its protonophoric action and is likely to be mediated by the ATP/ADP-translocator and uncoupling proteins. The effect of GBE was less in liver than in heart mitochondria. State 3 respiration of heart mitochondria was slightly stimulated at low and depressed at higher GBE concentrations. Inhibition of State 3 respiration of heart mitochondria was not relieved by uncoupler indicating that GBE may inhibit the respiratory chain complexes or the substrate transport. However, Complex IV of the respiratory chain was not inhibited by GBE. H2O2 generation was attenuated by low concentration of GBE probably due to mild uncoupling. The data suggest that mild but not severe uncoupling activity of GBE may be important in providing pharmacological protection of cellular functions in pathological situations.  相似文献   

20.
In the present study we show that N-acetylsphingosine (C2-ceramide), N-hexanoylsphingosine (C6-ceramide), and, to a much lesser extent, C2-dihydroceramide induce cytochrome c (cyto c) release from isolated rat liver mitochondria. Ceramide-induced cyto c release is prevented by preincubation of mitochondria with a low concentration (40 nM) of Bcl-2. The release takes place when cyto c is oxidized but not when it is reduced. Upon cyto c loss, mitochondrial oxygen consumption, mitochondrial transmembrane potential (Delta Psi), and Ca2+ retention are diminished. Incubation with Bcl-2 prevents, and addition of cyto c reverses the alteration of these mitochondrial functions. In ATP-energized mitochondria, ceramides do not alter Delta Psi, neither when cyto c is oxidized nor when it is reduced, ruling out a nonspecific disturbance by ceramides of mitochondrial membrane integrity. Furthermore, ceramides decrease the reducibility of cyto c. We conclude that the apoptogenic properties of ceramides are in part mediated via their interaction with mitochondrial cyto c followed by its release and that the redox state of cyto c influences its detachment by ceramide from the inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号