首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four independent 90 ps molecular dynamics simulations of sperm-whale wild-type carbonmonoxy myoglobin (MbCO) have been calculated using a new AMBER force field for the haem prosthetic group. Two trajectories have the distal 64N delta nitrogen protonated, and two have the 64N epsilon nitrogen protonated; all water molecules within 16 A of the carbonyl O are included. In three trajectories, the distal residue remains part of the haem pocket, with the protonated distal nitrogen pointing into the active site. This is in contrast with the neutron diffraction crystal structure, but is consistent with the solution phase CO stretching frequencies (upsilon CO) of MbCO and various of its mutants. There are significant differences in the "closed" pocket structures found for each tautomer: the 64N epsilon H trajectories both show stable distal-CO interactions, whereas the 64N delta H tautomer) has a weaker interaction resulting in a more mobile distal side chain. One trajectory (a 64N delta H tautomer) has the distal histidine moving out into the "solvent", leaving the pocket in an "open" structure, with a large unhindered entrance to the active site. These trajectories suggest that the three upsilon CO frequencies observed for wild-type MbCO in solution, rather than representing significantly different Fe-C-O geometries as such, arise from three different haem pocket structures, each with different electric fields at the ligand. Each pocket structure corresponds to a different distal histidine conformer: the A3 band to the 64N epsilon H tautomer, the A1,2 band to the 64N delta H tautomer, and the A0 band to the absence of any significant interaction with the distal side chain.  相似文献   

2.
J Ramsden  T G Spiro 《Biochemistry》1989,28(8):3125-3128
The resonance Raman band assigned to Fe--CO stretching in the sperm whale myoglobin CO adduct shifts from 507 cm-1 at neutral pH to 488 cm-1 at low pH, in concert with a shift of the C-O stretching infrared band from 1947 to 1967 cm-1 (Fuchsman & Appleby, 1979), while the 575-cm-1 Fe-C-O bending RR band loses intensity. The pKa that characterizes these changes is approximately 4.4. The vibrational frequencies at low pH are well modeled by the protein-free CO, imidazole adduct of protoheme in a nonpolar solvent while those at high pH are modeled by the adduct of a heme with a covalent strap (Yu et al., 1983) which inhibits upright CO binding. It is inferred that the Fe-C-O unit changes from a tilted to an upright geometry when the distal histidine is protonated, because its side chain swings out of the heme pocket due to electrostatic repulsion with a nearby arginine residue. A different protonation step (pKa = 5.7), which has been shown to modulate the CO rebinding kinetics (Doster et al., 1982) as well as the optical spectrum (Fuchsman & Appleby, 1979), is suggested to involve a global structure change associated with protonation of histidine residues distant from the heme.  相似文献   

3.
Analysis of cytochromes c (tuna), c2 (Rhodospirillum rubrum), c550 (Paracoccus denitrificans) and c551 (Pseudomonas aeruginosa) shows that they contain 48 residues identifiable as homologous from superposition of the structures. The other 34 to 64 residues are in loops that vary greatly in sequence, length and conformation, or in alpha-helices that are found in only some of the structures. Of the 48 homologous residues, 17 are in three segments which pack onto the haem faces. In all four structures, these segments have the same conformations, and the same locations relative to the haem. The other 31 residues are in three alpha-helices which are in contact with each other. These form the back and one side of the haem pocket. In cytochrome c551 the positions of the three alpha-helices have shifted and rotated, in comparison with cytochromes c and c2, by up to 5 A and 25 degrees relative to the haem. These shifts, facilitated by mutations at the helix-helix interfaces, are related to the reconstruction of the propionic acid side of the haem pocket described by Almassy & Dickerson (1978). Together these effects produce alternative structures for the haem pocket. This mechanism of adaptation to mutation contrasts with that observed in the globins. In the globins, mutations also produce changes in helix interfaces and shifts of packed helices, but in the globins these shifts are coupled to conserve the structure of the haem pocket.  相似文献   

4.
We report the X-ray crystal structure of two analogues of human haemoglobin in the deoxy quaternary (T) state with ligand bound exclusively at the alpha haems. These models were prepared from symmetric, mixed-metal hybrid haemoglobin molecules. The structures of alpha Fe(II) beta Co(II), its carbonmonoxy derivative alpha Fe(II)CO beta Co(II), and alpha Fe(II)O2 beta Ni(II) are compared with native deoxy haemoglobin by difference Fourier syntheses at 2.8, 2.9 and 3.5 A resolution, respectively, and the refined alpha Fe(II)CO beta Co(II) structure is analysed. In both the native deoxy and liganded T molecules, the mean plane of the alpha-subunit haem is parallel with the axis of the F helix, but this plane is tilted with respect to the helix axis in the oxy-quaternary R state. The side-chains of LeuFG3 and ValFG5 sterically restrict haem tilting in the T state. We propose that strain energy develops at the contact between the haem and these residues in the liganded T-state haemoglobin, and that the strain is, in part, responsible for the low affinity of the T-state alpha haem.  相似文献   

5.
The protein contribution to the relative binding affinity of the ligands CO and O2 toward myoglobin (Mb) has been simulated using free energy perturbation calculations. The tautomers of the His E7 residue are different for the oxymyoglobin (MbO2) and carboxymyoglobin (MbCO) systems. This was modeled by performing two-step calculations that mutate the ligand and mutate the His E7 tautomers in separate steps. Differences in hydrogen bonding to the O2 and CO ligands were incorporated into the model. The O2 complex was calculated to be 2-3 kcal/mol more stable than the corresponding CO complex when compared to the same difference in an isolated heme control. This value agrees well with the experimental value of 2.0 kcal/mol. In qualitative agreement with experiments, the Fe-C-O bond is found to be bent (theta = 159.8 degrees) with a small tilt (theta = 6.2 degrees). The contributions made by each of the 29 residues--within the 9.0-A radius of the iron atom--to the free energy difference are separated into van der Waals and electrostatic contributions; the latter contributions are dominant. Aside from the proximal histidine and the heme group, the residues having the largest difference in free energy in mutating MbO2-->MbCO are His E7, Phe CD1, Phe CD4, Val E11, and Thr E10.  相似文献   

6.
Haemoglobin from donkey was purified and crystallized in space group C2. The present donkey haemoglobin model comprises of two subunits alpha and beta. These alpha and beta subunits comprise of 141 and 146 amino acid residues, respectively, and the haem groups. The donkey haemoglobin differs from horse only in two amino acids of alpha-chain (His20 to Asn and Tyr24 to Phe) and these substitutions do not significantly change the secondary structural features of donkey haemoglobin. The haem group region and subunit contacts are closely resemble with that of horse methaemoglobin.  相似文献   

7.
The erythrocruorin from the snail Planorbis corneus had a sedimentation coefficient, so/20,w, of 33.5 +/- 0.31 S, and a molecular weight of 1.65 x 10(6) +/- 0.04 x 10(6) by high-speed sedimentation-equilibrium ultracentrifugation. The amino acid composition and absorption spectrum of the protein are reported. A very low number of half-cystine residues was found, corresponding to 0.4 residue per haem group. The haem content was 2.76 +/- 0.22%, corresponding to a protein molecular weight of about 22300. Under both acid and alkaline conditions partial dissociation took place to yield mixtures of products that could not be identified. A subunit corresponding to that containing one haem group was not obtained under any of the dossociating conditions tried. Electron microscopy revealed a ring-shaped molecule about 12.2 +/- 0.5 nm in diameter. The native erythrocruorin bound O2 co-operatively, the intermediate value of h in Hill plots having values between 1.7 and 3.4 depending on the conditions.  相似文献   

8.
The three-dimensional crystal structure of catalase from Micrococcus lysodeikticus has been solved by multiple isomorphous replacement and refined at 1.5 A resolution. The subunit of the tetrameric molecule of 222 symmetry consists of a single polypeptide chain of about 500 amino acid residues and one haem group. The crystals belong to space group P4(2)2(1)2 with unit cell parameters a = b = 106.7 A, c = 106.3 A, and there is one subunit of the tetramer per asymmetric unit. The amino acid sequence has been tentatively determined by computer graphics model building and comparison with the known three-dimensional structure of beef liver catalase and sequences of several other catalases. The atomic model has been refined by Hendrickson and Konnert's least-squares minimisation against 94,315 reflections between 8 A and 1.5 A. The final model consists of 3,977 non-hydrogen atoms of the protein and haem group, 426 water molecules and one sulphate ion. The secondary and tertiary structures of the bacterial catalase have been analyzed and a comparison with the structure of beef liver catalase has been made.  相似文献   

9.
S H Lin  N T Yu  J Tame  D Shih  J P Renaud  J Pagnier  K Nagai 《Biochemistry》1990,29(23):5562-5566
Using an Escherichia coli gene expression system, we have engineered human hemoglobin (Hb) mutants having the distal histidine (E7) and valine (E11) residues replaced by other amino acids. The interaction between the mutated distal residues and bound carbon monoxide has been studied by Soret-excited resonance Raman spectroscopy. The replacement of Val-E11 by Ala, Leu, Ile, and Met has no effect on the v(C-O), v(Fe-CO) stretching or delta(Fe-C-O) bending frequencies in both the alpha and beta subunits of Hb, although some of these mutations affect the CO affinity as much as 40-fold. The strain imposed on the protein by the binding of CO is not localized in the Fe-CO bond and is probably distributed among many bonds in the globin. The replacement of His-E7 by Val or Gly brings the stretching frequencies v(Fe-CO) and v(C-O) close to those of free heme complexes. In contrast, the substitution of His-E7 by Gln, which is flexible and polar, produces no effects on the resonance Raman spectrum of either alpha- or beta-globin. The replacement of His-E7 of beta-globin by Phe shows the same effect as replacement by Gly or Val. Therefore, the steric bulk of the distal residues is not the primary determinant of the Fe-CO ligand vibrational frequencies. The ability of both histidine and glutamine to alter the v(C-O), v(Fe-CO), or delta(Fe-C-O) frequencies may be attributed to the polar nature of their side chains which can interact with bound CO in a similar manner.  相似文献   

10.
Protoglobin from Methanosarcina acetivorans C2A (MaPgb), a strictly anaerobic methanogenic Archaea, is a dimeric haem-protein whose biological role is still unknown. As other globins, protoglobin can bind O2, CO and NO reversibly in vitro, but it displays specific functional and structural properties within members of the hemoglobin superfamily. CO binding to and dissociation from the haem occurs through biphasic kinetics, which arise from binding to (and dissociation from) two distinct tertiary states in a ligation-dependent equilibrium. From the structural viewpoint, protoglobin-specific loops and a N-terminal extension of 20 residues completely bury the haem within the protein matrix. Thus, access of small ligand molecules to the haem is granted by two apolar tunnels, not common to other globins, which reach the haem distal site from locations at the B/G and B/E helix interfaces. Here, the roles played by residues Trp(60)B9, Tyr(61)B10 and Phe(93)E11 in ligand recognition and stabilization are analyzed, through crystallographic investigations on the ferric protein and on selected mutants. Specifically, protein structures are reported for protoglobin complexes with cyanide, with azide (also in the presence of Xenon), and with more bulky ligands, such as imidazole and nicotinamide. Values of the rate constant for cyanide dissociation from ferric MaPgb-cyanide complexes have been correlated to hydrogen bonds provided by Trp(60)B9 and Tyr(61)B10 that stabilize the haem-Fe(III)-bound cyanide. We show that protoglobin can strikingly reshape, in a ligand-dependent way, the haem distal site, where Phe(93)E11 acts as ligand sensor and controls accessibility to the haem through the tunnel system by modifying the conformation of Trp(60)B9.  相似文献   

11.
The crystal structure of erythrocruorin has been refined by constrained crystallographic refinement at 1·4 Å resolution in the following ligand states: aquomet (Fe3+, high spin), cyanomet (Fe3+, low spin), deoxy (Fe2+, high spin) and carbonmonoxy (Fe2+, low spin). The final R-value at this resolution is better than 0·19 for each of these models. The positional errors of the co-ordinates are less than 0·1 Å.The root-mean-square differences between the deoxygenated and the ligated erythrocruorin are about 0·1 Å, being largest for cyanomet-erythrocruorin. The changes in tertiary structures propagate from the location of primary events and often fade out at the molecular surface. Helix E passing the distal side of the haem group is affected most by the direct contact with the ligand bound to the haem iron.Steric hindrance by the distal residue IleE11 forces the cyanide and carbonmonoxide ligands to bind at an angle to the haem axis. The strain at the ligand is partially relieved by movement of the haem deeper into the haem pocket and rearrangement of neighbouring residues.The differences in iron location with respect to the mean haem plane are spin-dependent but unexpectedly small (the largest value is 0·15 Å between deoxy and carbonmonoxy-erythrocruorin). Spin state changes seem to have little influence on the porphyrin stereochemistry; it is determined primarily by the chemical properties of the ligand and its interaction with the haem and the globin. These non-covalent interactions are largely responsible for the initiation of the structural changes on ligand binding.  相似文献   

12.
Stereochemical mechanism of oxygen transport by haemoglobin   总被引:2,自引:0,他引:2  
Spectroscopic and chemical evidence speak in favour of the iron-oxygen bond being polar. X-ray analysis shows that the oxygen molecule is inclined at an angle of about 115 degrees to the haem plane. Cooperative binding of oxygen by haemoglobin is due to an equilibrium between two alternative structures, which differ in oxygen affinity by the equivalent of 3-3.5 kcal/mol. I proposed that in the low affinity structure the globin opposes the movement of the iron atom from its five-coordinated pyramidal geometry in the haem of deoxyhaemoglobin to its six-coordinated planar geometry in the haem of oxyhaemoglobin, while in the high affinity structure this restraint is absent. Recent evidence supporting this mechanism is described.  相似文献   

13.
1. Microsomal preparations undergoing lipid peroxidation produce CO and lose haem from cytochrome P-450. 2. The amount of CO produced does not correlate with the amount of haem lost and, after pre-labelling of microsomal haem in its bridges with 5-amino[5-14C]laevulinate, the radioactivity lost from haem is not recorved as CO. 3. Similarly, when pre-labelled microsomal haem is destroyed by the action of 2-allyl-2-isopropylacetamide, no radioactivity is recovered as CO. In clear contrast, on degradation of haem by the haem oxygenase system, CO is produced in an amount equimolar to the haem lost. 4. It is concluded that (a) the CO produced during lipid peroxidation originates from a source different from haem and (b) the degradations of haem caused by lipid peroxidation and 2-allyl-2-isopropylacetamide do not involve to any significant extent evolution of the methene-bridge carbon of haem as CO.  相似文献   

14.
The interactions between the heme CO ligand in the oxygenase domain of nitric oxide synthase and a set of substrate analogues were determined by measuring the resonance Raman spectra of the Fe-C-O vibrational modes. Substrates were selected that have variations in all the functional units: the guanidino group, the amino acid site and the number of methylene units connecting the two ends. In comparison to the substrate free form of the enzyme, Interactions of the analogues with the CO moiety caused the Fe-CO stretching and the Fe-C-O bending modes to shift in frequency due to the electrostatic environment. An unmodified guanidino group interacted with the CO in a similar fashion despite changes in the amino acid end. However, an unmodified amino acid end is required for catalysis owing to the H-bonding network involving the substrate, the heme and the pterin cofactor.  相似文献   

15.
Combined quantum chemical and molecular mechanics geometry optimisations have been performed on myoglobin without or with O(2) or CO bound to the haem group. The results show that the distal histidine residue is protonated on the N(epsilon 2) atom and forms a hydrogen bond to the haem ligand both in the O(2) and the CO complexes. We have also re-refined the crystal structure of CO[bond]myoglobin by a combined quantum chemical and crystallographic refinement. Thereby, we probably obtain the most accurate available structure of the active site of this complex, showing a Fe[bond]C[bond]O angle of 171 degrees, and Fe[bond]C and C[bond]O bond lengths of 170-171 and 116-117 pm. The resulting structures have been used to calculate the strength of the hydrogen bond between the distal histidine residue and O(2) or CO in the protein. This amounts to 31-33 kJ/mol for O(2) and 2-3 kJ/mol for CO. The difference in hydrogen-bond strength is 21-22 kJ/mol when corrected for entropy effects. This is slightly larger than the observed discrimination between O(2) or CO by myoglobin, 17 kJ/mol. We have also estimated the strain of the active site inside the protein. It is 2-4 kJ/mol larger for the O(2) complex than for the CO complex, independent of which crystal structure the calculations are based on. Together, these results clearly show that myoglobin discriminates between O(2) and CO mainly by electrostatic interactions, rather than by steric strain.  相似文献   

16.
CO bond angle changes in photolysis of carboxymyoglobin   总被引:2,自引:0,他引:2  
Previous studies [Chance, B., Fischetti, B., & Powers, L. (1983) Biochemistry 22, 3820-3829] of the local structure changes around the iron in carboxymyoglobin on photolysis at 4 K revealed that the iron-carbon distance increased approximately 0.05 A but was accompanied by a lengthening of the iron-pyrrole nitrogen bonds of the heme (approximately 0.03 A) that was not as large as that found in the deoxy form. Further analysis of these data together with comparison to model compounds indicates that the Fe-C-O bond angle in carboxymyoglobin is bent (127 +/- 4 degrees), having a structure identical, within the error, with the "pocket" porphyrin model compound FePocPiv(1-MeIm)(CO) [Collman, J. P., Brauman, J. I., Collins, T. J., Iverson, B. L., Lang, G., Pettman, R., Sessler, J. L., & Walters, M. A. (1983) J. Am. Chem Soc. 105, 3038-3052]. On photolysis, this angle decreases by 5-10 degrees. In addition, correlation is observed between the increase in the length of the Fe-C bond and the decrease of the Fe-C-O angle. These results suggest that the rate-limiting step in recombination is the thermal motion of CO in the pocket to achieve an appropriate bonding angle with respect to the iron. These changes constitute the first molecular picture of the photolysis process, as well as the structure of the geminate state, and are important in clarifying nuclear tunneling parameters.  相似文献   

17.
The half-reduced, fully reduced and fully reduced CO-bound forms of the enzyme cytochrome c-551 peroxidase isolated from Pseudomonas aeruginosa were examined by a combination of low-temperature absorption and magnetic-circular-dichroism spectroscopy. Deliberate low-temperature (4.2K) photolysis of these forms of the enzyme, in all of which the high-potential haem is in the ferrous state, revealed that this haem group, assigned to have a histidine-methionine ligand set, is photosensitive. The photolabile ligand is most likely to be the methionine residue, and the product of photolysis, namely the high-spin (S = 2) ferrous form, is stable at low temperature (4.2K). Warming to approx. 20K allows thermal recombination to occur, restoring the low-spin (S = 0) state. The low-potential haem (bis-histidine ligation) is photoinert in both ferric and ferrous states; however, the photosensitive CO adduct of this centre cannot be maintained as the photolysed (S = 2) product at 4.2K. This surprising observation may be due to quantum-mechanical tunnelling of the CO through the activation barrier even at 4.2K, implying that the activation barrier to thermal recombination is both narrow and low. Low-temperature absorption spectroscopy reveals that the high-potential haem has a very characteristic low-spin ferrous spectrum with intense highly structured beta- and split alpha-bands, whereas the spectrum of the low-potential ferrous haem contains alpha- and beta-bands devoid of fine structure.  相似文献   

18.
B Chance  C Saronio    J S Leigh  Jr 《The Biochemical journal》1979,177(3):931-941
Compound C2 is a product of the reaction of O2 and the mixed-valence state of cytochrome oxidase. The mixed-valence state of membrane-bound cytochrome oxidase is obtained at -24 degrees C, by using either ferricyanide or yeast peroxidase complex ES as oxidants, and the configurations of oxidized haem a and its associated copper (a3+Cua2+) and of reduced haem a3 and its associated copper (ac3+.CO.Cua3+) are obtained. The mixed-valence-state cytochrome oxidase mixed with O2 at -24 degrees C and flash-photolysed at -60 to -100 degrees C reacts with O2 and initially forms an oxy compound (A2) similar to that formed from the fully reduced state (A1). Thereafter the course of the reaction differs from that obtained in the fully reduced state, and absorbance increases are observed at 740--750 nm and 609 nm and a decrease at 444 nm, with no increase in absorbance at 655 nm. One possible attribution of the absorbance increases is to charge-transfer interaction between the iron of haem a3 and the copper associated with haem a3, Cua3(2+), having properties of a type-I 'blue' copper. A possible attribution of the decrease in absorbance at 444 nm is to liganding of a3(2+). A related explanation is that the 609 nm absorbance involves a charge-transfer interaction of both iron and copper as a mixed-valence binuclear complex, Cua3, having properties of a non-blue copper. Intermediates in addition to Compound C2 are not yet identifiable by chemical or spectroscopic tests. The kinetic and equilibrium properties of Compound C2 are described.  相似文献   

19.
Two-dimensional NMR has been used to make specific assignments for the four haems in Desulfovibrio vulgaris (Hildenborough) ferrocytochrome c3 and to determine their haem core architecture. The NMR signals from the haem protons were assigned according to type using two-dimensional NMR experiments which led to four sets of signals, one for each of the haems. Specific assignments were obtained by calculating the ring current shifts which arise from other haems and aromatic residues. Observation of interhaem NOEs confirmed the assignments and established that the relative orientation of the haems is identical to that found in the crystal structure of D. vulgaris (Miyazaki F.) ferricytochrome c3. Assignments were also made for all the aromatic residues except for the haem ligands and F20, which is shifted under the main envelope of signals. The NOEs observed between these aromatic protons and haem protons confirm the similarity between the structures in solution and in the crystal. The assignments reported here are the basis for the cross-assignments of the four microscopic haem redox potentials to specific haems in the protein structure [Salgueiro, C. A., Turner, D. L., Santos, H., LeGall, J. and Xavier, A. V. (1992) FEBS Lett., in the press]  相似文献   

20.
Each of the three cysteinyl residues per subunit in D-amino acid transaminase from a thermophilic species of Bacillus has been changed to a glycine residue (C142G, C164G, and C212G) by site-directed mutagenesis. The mutant enzymes were detected by Western blots and a stain for activity. After purification to homogeneity, each mutant protein had the same activity as the wild-type enzyme. Thus, none of the Cys residues are essential for catalysis. Each protein when denatured showed the expected titer of two SH groups per subunit. In the native state, each of the three mutant proteins exhibited nearly the same slow rate of titration of SH groups as the wild-type protein with about one SH group titratable over a period of 4 h. Conversion of Ser-146, adjacent to Lys-145 to which the coenzyme pyridoxal phosphate is bound, to an alanine residue (S146A) does not alter the catalytic activity but has a significant effect on the SH titration behavior. Thus, three to four of the six SH groups of S146A are titratable by DTNB. The rapid SH titration of S146A is prevented by the presence of D-alanine. This finding suggests that the change of Ser-146 to Ala at the active site promotes the exposure and rapid titration of a Cys residue in that region. The rapid SH titration of S146A by DTNB is accompanied by a loss of enzyme activity. Two of the mutant enzymes, C142G and S146A, lose activity at 4 degrees C and also upon freezing and thawing. The mutant enzymes C164G and C212G show the same degree of thermostability as the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号