首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Environmental distribution and bioremediation of hydrocarbon pollutants is described in the literature with complex mathematical models. Better understanding and easier model application require detailed model analysis. In this work, local sensitivity analysis of the kinetic parameters and metabolic control analysis of the biological part of the integrated BTEX bioremediation model were performed. Local sensitivity analysis revealed that the dissolved oxygen concentration (S O) and particulate iron (III) oxide concentration (S Fe) were the most sensitive to both positive and negative parameter value perturbations. In the case of model reactions, aerobic growth (r1) and aerobic growth on acetate (r13) were observed to be the most sensitive. The elasticity, flux control, and concentration control coefficients were estimated by applying the metabolic control analysis methodology. Metabolic control analysis revealed a positive effect of ammonium on all analysed model reactions. The results also indicated the importance of perturbation of the enzyme level catalysing iron reduction on acetate on model fluxes, as well as the importance of enzyme level catalysing aerobic growth on model metabolite concentration. These results can be used in planning optimal operating strategy for BTEX bioremediation.  相似文献   

3.
We expand the biogeochemical model CCBATCH to include a precipitation/dissolution sub-model that contains kinetic and equilibrium options. This advancement extends CCBATCH's usefulness to situations in which microbial reactions cause or are affected by formation or dissolution of a solid phase. The kinetic option employs a rate expression that explicitly includes the intrinsic kinetics for reaction ormass-transport control, the differencefrom thermodynamic equilibrium, and the aqueous concentration of the rate-limiting metal or ligand. The equilibrium feature can be used alone, and it also serves as check that the kinetic rate never is too fast and ``overshoots' equilibrium. The features of the expanded CCBATCH are illustrated by an example in which the precipitation of Fe(OH)3 (s) allows the biodegradation of citric acid, even though complexes are strong and not bioavailable. Precipitation releases citrate ligand, and biodegradation of the citrate increases the pH.  相似文献   

4.
Aromatic hydrocarbons are widespread in nature and often contribute to the pollution of soils, sediments, and groundwater. The contamination of soil with mobile aromatic compounds, generally termed BTEX (benzene, toluene, ethylbenzene, xylene) is observed at many industrial sites, especially those associated with the petrochemical industry. In situ bioremediation of sites that are contaminated with BTEX can be applied both aerobically and anaerobically. The use of anaerobic in situ bioremediation is advantageous because supply of oxygen is not needed. Nevertheless, anaerobic in situ bioremediation is less commonly used for BTEX contaminated sites. This paper describes push-pull experiments in order to stimulate the degradation of benzene by the addition of nitrate or chlorate. Deuterated benzene was subjected with nitrate-amended groundwater to the aquifer, and the mineralization was traced by the enrichment of deuterium in the groundwater. Nitrate can be used as electron acceptor, and the addition of nitrate at a site in The Netherlands resulted in partial degradation of benzene. This was demonstrated by comparing various push-pull experiments, benzene concentration measurements, stable isotope analyses of benzene and water, and modeling. Chlorate can be used for the in situ production of oxygen, followed by degradation of benzene with oxygen as electron acceptor. The addition of chlorate at the site resulted in the complete removal of benzene demonstrating a complete degradation within 4 weeks. A pull phase was not needed during this run.  相似文献   

5.
Aims:  To assess the changes in acute toxicity and biodegradation of benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) compounds in soil over time and compare the performances of biological and chemical techniques.
Methods and Results:  Biological methods ( lux -based bacterial biosensors, basal respiration and dehydrogenase activity) were related to changes in the concentration of the target compounds. There was an initial increase in toxicity determined by the constitutively expressed biosensor, followed by a continual reduction as degradation proceeded. The biosensor with the BTEX-specific promoter was most induced when BTEX concentrations were highest. The treatment with nutrient amendment had a significant increase in microbial activity, while the sterile control produced the lowest level of degradation.
Significance and Impact of the Study:  Luminescent biosensors were able to monitor changes in contaminant toxicity and bioavailability in aqueous extracts from BTEX-impacted soils as degradation proceeded. The integration of biological tests with chemical analysis enables a fuller understanding of the biodegradation processes occurring at their relative rates.
Conclusions:  The biological methods were successfully used in assessing the performance of different treatments for enhancing natural attenuation of BTEX from contaminated soils. While, chemical analysis showed biodegradation of parent BTEX compounds in biologically active soils, the biosensor assays reported on changes in bioavailability and potentially toxic intermediate fractions as they estimated the integrative effect of contaminants.  相似文献   

6.
Alvarez Cobelas  M.  Velasco  J. L.  Rubio  A.  Rojo  C. 《Hydrobiologia》1994,275(1):139-151
Weekly studies of phytoplankton biomass and environmental variables were made over one year in a shallow stratifying, hypertrophic El Porcal lake near Madrid (Spain). Data were collected on abiotic factors, primary production, biomass and phytoplankton losses and subjected to reduction by means of several principal component analyses. Furthermore, weekly data on the same variables were gathered from published studies on Überlinger See, an embayment of the much deeper, mesotrophic Lake Constance (Central Europe), and treated in the same way. The two first principal components of PCAs on biological variables explained more than 60% of overall variance in both lakes. They could be ascribed to phytoplankton production + biomass and photosynthetic physiology + phytoplankton losses, respectively. The ordination of the biological trajectories in the data space of the two first principal components revealed six stable states of phytoplankton biomass in the shallow lake and seven in the deep lake. The breakpoints between stable states could be due to environmental, abiotic variables in some cases but biological interactions were suspected to be the cause of the other breakpoints. The abiotic effects on phytoplankton biomass took longer to occur in the deep lake. Also, short-term dynamics (one-three weeks) were demonstrated for both phytoplankton communities.A preliminary comparison between phytoplankton biomass dynamics in stratifying, shallow and deep lakes suggests that differences may be attributed partly to differences in depth.  相似文献   

7.
A two‐dimensional non‐homogeneous biofilm model is proposed for the first time to study chemical and biochemical reactions at the microorganism scale applied to biological metal leaching from mineral ores. The spatial and temporal relation between these reactions, microorganism growth and the morphological changes of the biofilm caused by solid inorganic precipitate formation were studied using this model. The model considers diffusion limitations due to accumulation of inorganic particles over the mineral substratum, and allows the study of the effect of discrete phases on chemical and microbiological mineral solubilization. The particle‐based modeling strategy allowed representation of contact reactions between the microorganisms and the insoluble precipitates, such as those required for sulfur attack and solubilization. Time‐dependent simulations of chemical chalcopyrite leaching showed that chalcopyrite passivation occurs only when an impervious solid layer is formed on the mineral surface. This mineral layer hinders the diffusion of one kinetically determinant mineral‐attacking chemical species through a nearly irreversible chemical mechanism. Simulations with iron and sulfur oxidizing microorganisms revealed that chemolithoautotrophic biofilms are able to delay passivation onset by formation of corrosion pits and increase of the solid layer porosity through sulfur dissolution. The model results also show that the observed flat morphology of bioleaching biofilms is favored preferentially at low iron concentrations due to preferential growth at the biofilm edge on the surface of sulfur‐forming minerals. Flat biofilms can also be advantageous for chalcopyrite bioleaching because they tend to favor sulfur dissolution over iron oxidation. The adopted modeling strategy is of great interest for the numerical representation of heterogeneous biofilm systems including abiotic solid particles. Biotechnol. Bioeng. 2010;106: 660–676. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene and ethylbenzene were used as sources of carbon and energy, whereas the xylenes were cometabolized to different extents. o-Xylene and m-xylene were converted to phthalates as end metabolites; p-xylene was not degraded in complex BTEX mixtures but, in combination with toluene, appeared to be mineralized. The metabolic profiles and the inhibitory nature of the substrate interactions indicated that toluene, ethylbenzene, and xylene were degraded at the side chain by the same monooxygenase enzyme. Our findings suggest that soil fungi could contribute significantly to bioremediation of BTEX pollution.  相似文献   

9.
Vertical profiles of total dissolved arsenic, manganese and iron, pH, Eh and rates of sulfate reduction were determined in a freshly-collected box core from a 335m depth station in the Laurentian Trough. The relationships observed between the profiles were further examined in the laboratory by measuring these same parameters with time in surficial sediment slurries as the Eh decreased in response to biological activity or chemical alteration.Both field and laboratory observations have shown that arsenic is released predominantly as As(III) into reducing sediment porewaters. This occurs after the dissolution of manganese oxides and at the same time as the dissolution of iron oxyhydroxides and the onset of sulfate reduction. Laboratory experiments indicated that sulfate reduction and the production of sulfide ions are not solely responsible for the release of arsenic to the porewaters, although this process is necessary to create and maintain a highly reducing environment conducive to rapid iron dissolution.The diagenesis of arsenic in Laurentain Trough sediments involves the simultaneous release of arsenic and iron at a subsurface depth, followed by its removal from porewaters by precipitation and adsorption reactions after migration by diffusion along concentration gradients. A qualitative model is presented to describe the behavior of arsenic in coastal marine sediments.Present address: Department of Geological Sciences, McGill University, 3450 UniversityStreet, Montreal, Quebec H3A 2A7, Canada  相似文献   

10.
In situ bioremediation of monoaromatic pollutants in groundwater: a review   总被引:3,自引:0,他引:3  
Monoaromatic pollutants such as benzene, toluene, ethylbenzene and mixture of xylenes are now considered as widespread contaminants of groundwater. In situ bioremediation under natural attenuation or enhanced remediation has been successfully used for removal of organic pollutants, including monoaromatic compounds, from groundwater. Results published indicate that in some sites, intrinsic bioremediation can reduce the monoaromatic compounds content of contaminated water to reach standard levels of potable water. However, engineering bioremediation is faster and more efficient. Also, studies have shown that enhanced anaerobic bioremediation can be applied for many BTEX contaminated groundwaters, as it is simple, applicable and economical.

This paper reviews microbiology and metabolism of monoaromatic biodegradation and in situ bioremediation for BTEX removal from groundwater under aerobic and anaerobic conditions. It also discusses the factors affecting and limiting bioremediation processes and interactions between monoaromatic pollutants and other compounds during the remediation processes.  相似文献   


11.
An extensive network of multilevel samplers was established in a hydrocarbon-contaminated wetland aquifer. Results of groundwater sampling for benzene, toluene, ethylbenzene, and xylenes (BTEX), and electron acceptors show that both pristine and contaminated groundwater have spatially variable chemical signatures, owing primarily to microbially mediated oxidation-reduction reactions. Due to these spatial variations, estimates of the efficiency of intrinsic bioremediation can vary significantly depending on how geochemical data are collected. Use of data collected from monitoring wells with screens longer than the vertical extent of the plume will generally underestimate the potential for intrinsic bioremediation for the most chemically active horizon of the plume. A comparison of pristine and contaminated redox patterns demonstrates that, although BTEX exerts the highest demand for electron acceptors, oxidation of natural organic matter also contributes to electron acceptor utilization. If natural and other non-BTEX losses of electron acceptors are ignored, the assimilative capacity, defined as the amount of a contaminant that can potentially be degraded with known amounts of electron acceptors, will be overestimated. Many numerical and analytical models designed to simulate biodegradation are directly or indirectly based on assimilative capacity estimates. Proper estimation of assimilative capacity is crucial if models are to accurately quantify solute concentrations over time and space.  相似文献   

12.
Treatment of a gas contaminated with a mixture of benzene, toluene, ethylbenzene, and o-xylene (BTEX) compounds in a 40-cm-deep laboratory-scale bioreactor containing suspended biomass was investigated. Gas treatment efficiency was not significantly impacted by different BTEX mixtures, and approximately 99% removal was achieved for volumetric loadings of 11 to 18 mg-BTEX/L-reactor volume/hr (specific biomass loadings of 0.27 to 0.83 g-BTEX/g-VSS/d; inlet concentrations of total BTEX of 2.3 to 4.3 mg/L) and operational solids retention times (SRTs) of 1.7, 2.7, and 9.2 days. Maximum specific biodegradation rates of the reactor biomass increased as the reactor SRTs decreased. Under specific loadings greater than 1 g-BTEX/g-VSS/d the gas treatment became biokinetically limited, such that BTEX and unidentified BTEX metabolites accumulated in the bioreactor liquid over time. BTEX gas-liquid mass transfer was sufficient in the 40-cm-deep sparged liquid reactor to provide high BTEX treatment efficiency.  相似文献   

13.
In this study, we cultivated from subsurface sediments an anaerobic clostridial consortium that was composed of a fermentative Fe-reducer Clostridium species (designated as strain FGH) and a novel sulfate-reducing bacterium belonging to the clostridia family Vellionellaceae (designated as strain RU4). In pure culture, Clostridium sp. strain FGH mediated the reductive dissolution/transformation of iron oxides during growth on peptone. When Clostridium sp. FGH was grown with strain RU4 on peptone, the rates of iron oxide reduction were significantly higher. Iron reduction by the consortium was mediated by multiple mechanisms, including biotic reduction by Clostridium sp. FGH and biotic/abiotic reactions involving biogenic sulfide formed by strain RU4. The Clostridium sp. FGH produced hydrogen during fermentation, and the presence of hydrogen inhibited growth and iron reduction activity. The sulfate-reducing partner strain RU4 was stimulated by the presence of H2and generated reactive sulfide which promoted the chemical reduction of the iron oxides. Characterization of Fe(II) mineral products showed the formation of nanoparticulate magnetite during ferrihydrite reduction, and the precipitation of iron sulfides during goethite and hematite reduction. The results suggest an important pathway for iron reduction and secondary mineralization by fermentative sulfate-reducing microbial consortia through syntrophy-driven biotic/abiotic reactions with biogenic sulfide.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   


14.
Increased regulatory constraints on industrial releases of atmospheric volatile organic compounds (VOCs) have resulted in an interest in using biofilters, bioscrubbers and air/liquid membranes for treatment of vapor phase waste streams. In this report, we describe the comparison of the use of two fundamentally different types of membrane module systems that allow the rapid diffusion of vapor phase aromatics and oxygen to an active biofilm for subsequent biodegradation. One system used a commercial membrane module containing microporous polypropylene fibers while the other used a nonporous silicone tubing membrane module for the delivery of substrate (a mixture of benzene, ethylbenzene, toluene, and xylenes [BTEX]) and electron acceptor (O2). Tests of the systems under similar conditions with BTEX in the vapor feed stream showed significant performance advantages for the silicone membrane system. The average surface-area-based BTEX removal rate for the microporous membrane system over 500 h of operation was 7.88 μg h−1 cm−2 while the rate for the silicone membrane system was 23.87 μg h−1 cm−2. The percentages of BTEX removal were also consistently better in the silicone membrane system versus the microporous system. Part of the performance problem associated with the microporous membrane system appeared to be internal water condensation and possible plugging of the pores with biomass over time that could not be resolved with vapor phase backflushing. Journal of Industrial Microbiology & Biotechnology (2002) 28, 245–251 DOI: 10.1038/sj/jim/7000235 Received 17 August 2001/ Accepted in revised form 03 December 2001  相似文献   

15.
The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene and ethylbenzene were used as sources of carbon and energy, whereas the xylenes were cometabolized to different extents. o-Xylene and m-xylene were converted to phthalates as end metabolites; p-xylene was not degraded in complex BTEX mixtures but, in combination with toluene, appeared to be mineralized. The metabolic profiles and the inhibitory nature of the substrate interactions indicated that toluene, ethylbenzene, and xylene were degraded at the side chain by the same monooxygenase enzyme. Our findings suggest that soil fungi could contribute significantly to bioremediation of BTEX pollution.  相似文献   

16.
17.
18.
Existing weathering models based on direct, abiotic factors, and biological factors through systemic feedbacks seem to describe the weathering rates observed in the field with good accuracy. The Swedish weathering rate model, PROFILE is the only existing model with this capacity. The PROFILE model is widely used and has been used successfully in sustainability assessments for forests and agriculture. The author has reviewed available experiments, as well as existing knowledge on chemical weathering kinetics and concludes that the physical and chemical conditions existing in forest soils do not allow any significant direct surface actions on minerals by microorganisms or tree roots. The reported tracks and holes in minerals have been mistakenly identified as being produced by roots, but this misunderstanding is caused by a lack of understanding of crystallography and chemical dissolution mechanisms. The holes and tracks have been produced by known chemical mechanisms.  相似文献   

19.
Abstract

Three biocontrol methods include classical biological control, augmentation and conservation (CBC). Among them, CBC includes different agricultural compatible methods, which try to build up natural enemy populations and consequently improve biological control. Some of the most common conservation methods include providing shelter (e.g. beetle banks and hedgerows), supplementary foods (pollen and nectar), providing overwintering sites, increasing landscape biodiversity and nesting. Furthermore, cover crops, living mulches, which buffer the harsh environmental conditions, strip harvesting are among the other most common methods. Recently, genetic manipulation of predators has been considered as a potential strategy in biological control. This strategy aimed to manipulate beneficial genetically to more tolerant them against adverse effect of pesticides and environmental condition or increase their predation (parasitism rate). We tried to review a growing body of conservation studies focusing on practices promoting predator efficacy and performance. We will discuss how CBC practices contribute to improve pest control.  相似文献   

20.
Laboratory incubations of aquifer material or enrichments derived from aquifer material as well as geochemical data have suggested that, under the appropriate conditions, BTEX components of petroleum (benzene, toluene, ethylbenzene and xylene) can be degraded in the absence of molecular oxygen with either Fe(III), sulfate, or nitrate serving as the electron acceptor. BTEX degradation under methanogenic conditions has also been observed. However, especially for benzene, the BTEX contaminant of greatest concern, anaerobic degradation is often difficult to establish and maintain in laboratory incubations. Although studies to date have suggested that naturally occurring anaerobic BTEX degradation has the potential to remove significant quantities of BTEX from petroleum-contaminated aquifers, and mechanisms for stimulating anaerobic BTEX degradation in laboratory incubations have been developed, further study of the organisms involved in this metabolism and the factors controlling their distribution and activity are required before it will be possible to design rational strategies for accelerating anaerobic BTEX degradation in contaminated aquifers. Received 21 November 1995/ Accepted in revised form 20 February 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号