共查询到20条相似文献,搜索用时 98 毫秒
1.
F Rieger S Bon J Massoulié J Cartauld B Picard P Benda 《European journal of biochemistry》1976,68(2):513-521
Electron microscopy, sequential degradation by hydrolytic enzymes and the physical-chemical properties of the molecular forms of Torpedo acetylcholinesterase indicate that these molecules are structurally related to each other in the same way as the molecular forms of Electrophorus acetylcholinesterase: all are derived from a complex structure in which three tetrameric groups of subunits are associated with a rod-like 'tail'. In aged preparations the catalytic subunits are split into fragments in a manner similar to those of Electrophorus acetylcholinesterase. Immunological cross-reaction between both enzymes demonstrates the occurrence of common antigenic sites. The enzymes from the two sources, however, are different in their molecular weights and susceptibility to hydrolytic enzymes. Also, Torpedo acetylcholinesterase does not precipitate with either isologous or heterologous antibodies. 相似文献
2.
Structural differences in the catalytic subunits of acetylcholinesterase forms from the electric organ of Torpedo marmorata 总被引:2,自引:1,他引:2 下载免费PDF全文
[3H]Diisopropylfluorophosphate was used to label covalently the catalytic subunits of the acetylcholinesterase forms extracted using different solubilization media. The incorporation of radiolabel was specific for true acetylcholinesterase, and SDS-polyacrylamide gel electrophoresis revealed that differences in molecular size existed between low salt-soluble (mol. wt. approximately 76 000), detergent-soluble (69 000) and high salt-soluble (72 000) acetylcholinesterase. These differences could not be attributed solely to an unusual migration behaviour but appeared to reflect differences in primary structure. While the basic unit of the low salt-soluble esterase was a monomer, the detergent-soluble esterase was linked by disulphide bridges to form dimers. The high salt-soluble form existed in large aggregates, whereby disulphide bridges form covalent links between the catalytic and non-catalytic elements. Pronase treatment showed that the differences were confined to the 'outer' structure of these molecules. The active site peptide exhibited homologies indicating that this part is conserved in the different classes of acetylcholinesterase. The results suggest that one can discriminate between at least three distinct esterase classes in the electric organ of Torpedo marmorata. 相似文献
3.
B Shuttleworth D L de Villiers C G Whiteley 《Archives of biochemistry and biophysics》1990,279(2):338-344
Kinetic analysis has shown that dimethylnitrosamine, dipropylnitrosamine, dibutylnitrosamine, and diphenylnitrosamine initially act as reversible competitive inhibitors with respect to the substrate, acetylthiocholine chloride. The inhibitor constants Ki vary from 21-30 microM for the aliphatic nitrosamines to 8.2 microM for the aromatic diphenylnitrosamine. With time they act as irreversible covalent inhibitors with dimethylnitrosamine producing 82% inactivation after 40 min. Pseudo-first-order kinetics are observed with the rate constant being proportional to the concentration of the nitrosamine and the order of reaction being equal to one. Fluorometry, gel chromatography, and equilibrium dialysis have been used to study the binding of the nitrosamines with acetylcholinesterase. Scatchard analysis indicates that dimethyl-, dipropyl-, and dibutylnitrosamine have a weaker affinity for the enzyme (Kd 5.6-8.08 microM) compared to diphenylnitrosamine (Kd 2.32 microM). In all cases the number of binding sites was four. 相似文献
4.
5.
Monoclonal antibodies against acetylcholinesterase from electric organs of Electrophorus and Torpedo
《Biochimie》1987,69(2):147-156
We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs. 相似文献
6.
Nunes-Tavares N Nery da Matta A Batista e Silva CM Araújo GM Louro SR Hassón-Voloch A 《The international journal of biochemistry & cell biology》2002,34(9):1071-1079
The effects of tricyclic antidepressants drugs (TCA) amitriptyline, imipramine and nortriptyline, on purified Electrophorus electricus (L.) acetylcholinesterase (AChE; acetylcholine hydrolase, EC 3.1.1.7) were studied using kinetic methods and specific fluorescent probe propidium. The antidepressants inhibited AChE activity by a non-competitive mechanism. Inhibition constants range from 200 to 400 microM. Dimethylated amitriptyline and imipramine were more potent inhibitors than the monomethylated nortriptyline. Fluorescence measurements using bis-quaternary ligand propidium were used to monitor ligand-binding properties of these cationic antidepressants to the AChE peripheral anionic site (PAS). This ligand exhibited an eight-fold fluorescence enhancement upon binding to the peripheral anionic site of AChE from E. electricus (L.) with K(D)=7 x 10(-7)M. It was observed that TCA drugs displaced propidium from the enzyme. On the basis of the displacement experiments antidepressant dissociation constants were determined. Similar values for the inhibition constants suggest that these drugs have similar affinity to the peripheral anionic site. The results also indicate that the catalytic active center of AChE does not participate in the interaction of enzyme with tricyclic antidepressants. These studies suggest that the binding site for tricyclic antidepressants is located at the peripheral anionic site of E. electricus (L.) acetylcholinesterase. 相似文献
7.
Isolation of a cDNA clone for a catalytic subunit of Torpedo marmorata acetylcholinesterase 总被引:4,自引:0,他引:4
We have constructed a cDNA library from Torpedo marmorata electric organ poly(A+) RNA in the lambda phage expression vector lambda gt11. This library has been screened with polyclonal anti-acetylcholinesterase antibodies. One clone, lambda AChE1, produced a fusion protein which was recognized by the antibodies and which prevented the binding of native acetylcholinesterase in an enzymatic immune assay. These results indicate that lambda AChE1 contains a cDNA insert coding for a part of a catalytic subunit of Torpedo acetylcholinesterase. The 200-base-pair cDNA insert hybridized to three mRNAs (14.5, 10.5 and 5.5 kb) from Torpedo electric organs. These mRNAs were also detected in Torpedo electric lobes. 相似文献
8.
9.
Sibelle Feitosa da Cunha Xavier Soares Andréia Aguiar Vieira Reinaldo Teixeira Delfino José Daniel Figueroa-Villar 《Bioorganic & medicinal chemistry》2013,21(18):5923-5930
Neurotoxic organophosphorus compounds (OPs), which are used as pesticides and chemical warfare agents lead to more than 700,000 intoxications worldwide every year. The main target of OPs is the inhibition of acetylcholinesterase (AChE), an enzyme necessary for the control of the neurotransmitter acetylcholine (ACh). The control of ACh function is performed by its hydrolysis with AChE, a process that can be completely interrupted by inhibition of the enzyme by phosphylation with OPs. Compounds used for reactivation of the phosphylated AChE are cationic oximes, which usually possess low membrane and hematoencephalic barrier permeation. Neutral oximes possess a better capacity for hematoencephalic barrier permeation.NMR spectroscopy is a very confident method for monitoring the inhibition and reactivation of enzymes, different from the Ellman test, which is the common method for evaluation of inhibition and reactivation of AChE. In this work 1H NMR was used to test the effect of neutral oximes on inhibition of AChE and reactivation of AChE inhibited with ethyl-paraoxon. The results confirmed that NMR is a very efficient method for monitoring the action of AChE, showing that neutral oximes, which display a significant AChE inhibition activity, are potential drugs for Alzheimer disease. The NMR method showed that a neutral oxime, previously indicated by the Ellman test as better in vitro reactivator of AChE inhibited with paraoxon than pralidoxime (2-PAM), was much less efficient than 2-PAM, confirming that NMR is a better method than the Ellman test. 相似文献
10.
11.
12.
13.
Molecular species analysis of the glycosylphosphatidylinositol anchor of Torpedo marmorata acetylcholinesterase 总被引:1,自引:0,他引:1
P Bütikofer F A Kuypers C Shackleton U Brodbeck S Stieger 《The Journal of biological chemistry》1990,265(31):18983-18987
We analyzed the molecular species composition of the glycosylphosphatidylinositol (GPI) anchor of Torpedo marmorata acetylcholinesterase (AChE) and compared it to that of the membrane phosphatidylinositol (PI) as well as the other major phospholipid classes of T. marmorata electrocytes. Purified amphiphilic AChE was treated with PI-specific phospholipase C in order to release the diradylglycerol moiety from the membrane anchoring domain. Subsequently, the diradylglycerols were derivatized into their diradylglycer-obenzoates and separated into subclasses (diacyl, alkylacyl, and alk-1-enylacyl types). The molecular species within each subclass were separated and quantitated by high performance liquid chromatography and UV detection and directly introduced through the thermospray interface into a mass spectrometer for identification. The PI moiety of the GPI anchor of AChE consisted exclusively of diacyl molecular species. Over 85% of the molecular species were composed of palmitoyl (16:0), stearoyl (18:0), and oleoyl (18:1) fatty acyl chains in the sn-1 and sn-2 positions. Less than 5% of the molecular species of the GPI anchor contained polyunsaturated fatty acyl chains, as compared to more than 70% of the diacyl molecular species of the PI from electrocyte membranes. Since the GPI anchors of AChE from both human and bovine erythrocytes contain alkylacyl molecular species of PI (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T. L. (1988) J. Biol. Chem. 263, 18766-18775), our results on AChE from Torpedo demonstrate that the composition of the PI moiety of the GPI anchor of a protein is not characteristic for that protein but may vary between species. 相似文献
14.
15.
Characterization of pepsin-resistant collagen-like tail subunit fragments of 18S and 14S acetylcholinesterase from Electrophorus electricus 总被引:4,自引:0,他引:4
Digestion of 18S and 14S acetylcholinesterase from eel electric organ with pepsin at 15 degrees C for 6 h results in extensive degradation of the catalytic subunits, but a major portion of the collagen-like tail structure associated with these enzyme forms resists degradation. The pepsin-resistant structures partially aggregate and can be isolated by gel exclusion chromatography on Sepharose CL-6B in buffered 1 M sodium chloride. The largest structure, denoted F3, has a molecular weight of 72 000 according to gel electrophoresis in sodium dodecyl sulfate and is composed of three 24 000 molecular weight polypeptides linked by intersubunit disulfide bonds. This structure is largely, but not completely, a collagen-like triple helix as indicated by a circular dichroism spectrum typical of triple-helical collagen and an amino acid composition characterized by 27% glycine, 5% hydroxyproline, and 5% hydroxylysine. Continued pepsin action results in degradation of the disulfide linkage region such that disulfide-linked dimers F2 and finally F1 monomers become the predominant forms in sodium dodecyl sulfate. Digested samples in which either F3 or F2 predominate have virtually identical circular dichroic spectra and amino acid compositions and generate similar diffuse 24 000 molecular weight polypeptides following disulfide reduction. Thus the intersubunit disulfide linkages in F3 must occur close to the end(s) of the fragment polypeptide chains. Pepsin conversion of F3 to F2 is particularly accelerated between 25 and 30 degrees C, suggesting that the triple-helical structure in the disulfide linkage region undergoes thermal destabilization in this temperature range. Digestion at 40 degrees C yields presumably triple-helical F1 structures devoid of disulfide linkages, although their degradation to small fragments can be detected at this temperature. The question of whether the three tail subunits that give rise to F1 polypeptides are identical remains open. 相似文献
16.
17.
18.
Muscle from the electric eel Electrophorus electricus contains acetylcholine receptors at 50 times the concentration of normal mammalian muscle and fully one-tenth the concentration of receptors in its electric organ tissue. Receptor is organized much more diffusely over the surface of Electrophorus muscle cells than is the case in normally innervated mammalian skeletal muscle. Receptor was purified from Electrophorus muscle by affinity chromatography on cobra toxin-agarose and found to contain subunits which correspond immunochemically to the alpha, beta, gamma, and delta subunits of receptor from electric organ tissue of Torpedo californica. Receptor purified from Electrophorus muscle appears virtually identical with receptor purified from Electrophorus electric organ tissue. 相似文献
19.
20.
Biochemical characterization of the tetrodotoxin binding protein from Electrophorus electricus 总被引:2,自引:0,他引:2
Biochemical properties of a detergent-solubilized tetrodotoxin binding component from Electrophorus electricus have been examined and compared with those found for the membrane-bound protein. The toxin binding component was solubilized with high efficiency by a variety of nonionic detergents and with lower efficiency by sodium cholate and deoxycholate. Detergent-solubilized preparations bound tetrodotoxin and saxitoxin tightly and specifically, and this binding was observed to be rapidly and irreversibly blocked by carboxylate-modifying reagents. Inactivation by carbodiimide and glycine ester or by a trimethyloxonium salt could be prevented by tetrodotoxin occupancy of the binding site. Tetrodotoxin binding activity in both solubilized preparations and in membranes was found to be highly resistant to proteases. In contrast, the activity was extremely sensitive to the action of phospholipase A2. The biochemical properties of the tetrodotoxin binding component solubilized in mixed lipid-detergent micelles are similar to those found in native membranes, with respect to the characteristics of equilibrium toxin binding and to the sensitivity of toxin binding activity to chemical modification and degradative enzymes. There were some differences with respect to the kinetics of tetrodotoxin binding. In addition, the tetrodotoxin binding component from eel is shown to behave as a glycoprotein, being selectively absorbed to resins coupled to concanavalin A, wheat germ agglutinin, Lens culinaris lectin, and ricin with the appropriate glycoside. 相似文献