首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The macromolecular composition and morphometry of the myotendineal junction (MTJ) of slow-twitch (type 1) and fast-twitch (type 2) muscle fibers were studied in gastrocnemius-soleus-Achilles unit of the rat. Proteoglycans and glycosaminoglycans, type III collagen, fibronectin and laminin could be detected at the myotendineal junction. Due to the membrane folding finger-like processes were seen at the MTJ. The processes of type 1 fibers were greater in size. However, due to the subdivisions the processes of type 2 muscle fibers had a significantly greater surface length per muscle cell diameter than type 1 fibers. The myotendineal endings of both fiber types had a characteristic basal lamina, which was about three times thicker than in the longitudinal site of the same muscle cells. The basal lamina of type 1 fibers at the MTJ was significantly thicker than that of type 2 fibers.  相似文献   

2.
Zebrafish myosepta connect two adjacent muscle cells and transmit muscular forces to axial structures during swimming via the myotendinous junction (MTJ). The MTJ establishes transmembrane linkages system consisting of extracellular matrix molecules (ECM) surrounding the basement membrane, cytoskeletal elements anchored to sarcolema, and all intermediate proteins that link ECM to actin filaments. Using a series of zebrafish specimens aged between 24 h post-fertilization and 2 years old, the present paper describes at the transmission electron microscope level the development of extracellular and intracellular elements of the MTJ. The transverse myoseptum development starts during the segmentation period by deposition of sparse and loosely organized collagen fibrils. During the hatching period, a link between actin filaments and sarcolemma is established. The basal lamina underlining sarcolemma is well differentiated. Later, collagen fibrils display an orthogonal orientation and fibroblast-like cells invade the myoseptal stroma. A dense network of collagen fibrils is progressively formed that both anchor myoseptal fibroblasts and sarcolemmal basement membrane. The differentiation of a functional MTJ is achieved when sarcolemma interacts with both cytoskeletal filaments and extracellular components. This solid structural link between contractile apparatus and ECM leads to sarcolemma deformations resulting in the formation of regular invaginations, and allows force transmission during muscle contraction. This paper presents the first ultrastructural atlas of the zebrafish MTJ development, which represents an useful tool to analyse the mechanisms of the myotendinous system formation and their disruption in muscle disorders.  相似文献   

3.
The 58K protein is a peripheral membrane protein enriched in the acetylcholine receptor (AChR)-rich postsynaptic membrane of Torpedo electric organ. Because of its coexistence with AChRs in the postsynaptic membrane in both electrocytes and skeletal muscle, it is thought to be involved in the formation and maintenance of AChR clusters. Using an mAb against the 58K protein of Torpedo electric organ, we have identified a single protein band in SDS-PAGE analysis of Xenopus myotomal muscle with an apparent molecular mass of 48 kD. With this antibody, the distribution of this protein was examined in the myotomal muscle fibers with immunofluorescence techniques. We found that the 48K protein is concentrated at the myotendinous junctions (MTJs) of these muscle fibers. The MTJ is also enriched in talin and vinculin. By double labeling muscle fibers with antibodies against talin and the 48K protein, these two proteins were found to colocalize at the membrane invaginations of the MTJ. In cultured myotomal muscle cells, the 48K protein and talin are also colocalized at sites of membrane-myofibril interaction. The 48K protein is, however, not found at focal adhesion sites in nonmuscle cells, which are enriched in talin. These data suggest that the 48K protein is specifically involved in the interaction of myofibrillar actin filaments with the plasma membrane at the MTJ. In addition to the MTJ localization, 48K protein is also present at AChR clusters both in vivo and in vitro. Thus, this protein is shared by both the MTJ and the neuromuscular junction.  相似文献   

4.
Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons.  相似文献   

5.
Summary Bands of electron-dense material beneath the cell membrane of smooth muscle cells of the guinea-pig taenia coli provide attachment to thin myofilaments and to intermediate (10 nm) filaments; about 50% of the cell membrane is occupied by dense bands in muscle cells transversely sectioned at the level of their nucleus, and between 50 and 100% in smaller cell profiles nearer the cell's ends. In addition to the known cell-to-cell junctions (intermediate contacts), more complex apparatuses anchor muscle cells together, either end-to-end or end-to-side or side-to-side. They consist of elaborate folds, invaginations and protrusions accompanied by large amounts of basal lamina material. In the end-to-end anchoring apparatuses numerous finger-like and laminar processes from the two cells interdigitate. Other muscle cells have a star-shaped profile in the last few microns of their length, or show longitudinal invaginations occupied by a thickened basal lamina and occasionally by collagen fibrils. The septa of connective tissue extend only for a few hundred microns along the length of the taenia. In taeniae fixed in condition of mild stretch the muscle cells form an angle of about 5° with the septa. In muscles fixed during isotonic contraction the angle increases to about 20–22°, and in longitudinal sections the muscle cells appear arranged in a herring-bone pattern. The collagen concentration in the taenia coli is 4–6 times greater that in skeletal and cardiac muscles. These various structures are discussed in terms of their possible role in the mechanism of force transmission.I thank Mr. S.J. Sarsfield and Miss E.M. Franke for expert technical assistance, and Dr. Adam Yamey for much help in the experiments on collagen content. This work is supported by grants from the Medical Research Council  相似文献   

6.
Muscle development involves the specification and morphogenesis of muscle fibers that attach to tendons. After attachment, muscles and tendons then function as an integrated unit to transduce force to the skeletal system and stabilize joints. The attachment site is the myotendinous junction, or MTJ, and is the primary site of force transmission. We find that attachment of fast-twitch myofibers to the MTJ correlates with the formation of novel microenvironments within the MTJ. The expression or activation of two proteins involved in anchoring the intracellular cytoskeleton to the extracellular matrix, Focal adhesion kinase (Fak) and beta-dystroglycan is up-regulated. Conversely, the extracellular matrix protein Fibronectin (Fn) is down-regulated. This degradation of Fn as fast-twitch fibers attach to the MTJ results in Fn protein defining a novel microenvironment within the MTJ adjacent to slow-twitch, but not fast-twitch, muscle. Interestingly, however, Fak, laminin, Fn and beta-dystroglycan concentrate at the MTJ in mutants that do not have slow-twitch fibers. Taken together, these data elucidate novel and dynamic microenvironments within the MTJ and indicate that MTJ morphogenesis is spatially and temporally complex.  相似文献   

7.
When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumulates. This effect of collagen was investigated by comparing the culture distribution, nature, and metabolic stability of the 35S-GAG-containing molecules produced by cells on plastic and collagen. During 48 h of labeling with 35SO4, cultures on collagen accumulate 1.4-fold more 35S-GAG per microgram of DNA. In these cultures, most of the extracellular 35S-GAG is immobilized with the lamina and collagen gel, whereas in cultures on plastic all extracellular 35S-GAG is soluble. On both substrata, the cells produce several heparan sulfate-rich 35S-proteoglycan fractions that are distinct by Sepharose CL-4B chromatography. The culture types contain similar amounts of each fraction, except that collagen cultures contain nearly four times more of a fraction that is found largely bound to the lamina and collagen gel. During a chase this proteoglycan fraction is stable in cultures on collagen, but is extensively degraded in cultures on plastic. Thus, collagen-induced formation of a basal lamina correlates with reduced degradation and enhanced accumulation of a specific heparan sulfate-rich proteoglycan fraction. Immobilization and stabilization of basal laminar proteoglycan(s) by interstitial collagen may be a physiological mechanism of basal lamina maintenance and assembly.  相似文献   

8.
T Ajiri  T Kimura  R Ito  S Inokuchi 《Acta anatomica》1978,102(4):433-439
Myotendon junctions in the rectus abdominis muscles of bull frogs were examined by the fixation combination of tannic acid and glutaraldehyde using electron microscopy. The features observed on myotendon junctions were the following: (1) There were many deep invaginations of muscle cell membrane at the end of the muscle fibers. Terminal thin filaments of myofibrils were attached to the electron-dense layer lining under the muscle cell membrane on the lateral walls of invaginations. (2) The basement membrane covering the muscle cell membrane was thicker in the invaginations than on the other sites of muscle fibers. (3) Collagen fibers in the invaginations gradually tapered off toward the bottom of the invaginations. But it was not seen that the collagen fibers were attached to both the basement membrane and cell membrane of muscle cells. (4) On the observations using the tannic acid-glutaraldehyde fixation, it was clearly seen that the microfibrils extend from the outer leaflets of the cell membrane to the collagen fibers in invaginations via the basement membrane. It was concluded that the myofibrils might be fastened to the collagen fibers of the tendon by the intermediates of the microfibrils.  相似文献   

9.
The interaction between the extracellular matrix and human tumor-cell clones S2-013 and S2-020, derived from a pancreatic cancer cell line (SUIT-2), was examined in vitro, using various cell differentiation-promoting matrices in two- and three-dimensional cultures. S2-013 cells (well-differentiated tubular adenocarcinoma in xenografts in nude mice) cultured in Matrigel formed glandular structures. Ultrastructural observation revealed a morphological polarity of cells and a distinct basal lamina. On the other hand, S2-020 cells (poorly differentiated tubular adenocarcinoma in xenografts) cultured in Matrigel formed neither glandular structures nor a basal lamina, but only cell aggregates. The morphology of these two sublines cultured in Matrigel expressed the histological degree of differentiation which they presented in nude mice. In contrast, in type I collagen gel, S2-013 cells formed glandular structures without a basal lamina, and in soft agar, they were able to form neither glandular structures nor a basal lamina. S2-020 cells cultured in type I collagen gel or soft agar formed the same simple cell aggregates as in Matrigel. Matrices used in a three-dimensional culture influenced the degree of differentiation in S2-013 cells but had no effect on the morphological differentiation in S2-020 cells. To detect the factors which induce basal lamina formation, S2-013 cells were cultured on a microporous membrane coated with extracellular matrix components such as laminin, type IV collagen, and fibronectin. S2-013 cells formed a basal lamina only on the laminin. These cell lines may be useful in investigating the mechanisms regulating the formation of glandular structures and basal lamina.  相似文献   

10.
《The Journal of cell biology》1983,97(5):1396-1411
Hybridoma techniques have been used to generate monoclonal antibodies to an antigen concentrated in the basal lamina at the Xenopus laevis neuromuscular junction. The antibodies selectively precipitate a high molecular weight heparan sulfate proteoglycan from conditioned medium of muscle cultures grown in the presence of [35S]methionine or [35S]sulfate. Electron microscope autoradiography of adult X. laevis muscle fibers exposed to 125I-labeled antibody confirms that the antigen is localized within the basal lamina of skeletal muscle fibers and is concentrated at least fivefold within the specialized basal lamina at the neuromuscular junction. Fluorescence immunocytochemical experiments suggest that a similar proteoglycan is also present in other basement membranes, including those associated with blood vessels, myelinated axons, nerve sheath, and notochord. During development in culture, the surface of embryonic muscle cells displays a conspicuously non-uniform distribution of this basal lamina proteoglycan, consisting of large areas with a low antigen site-density and a variety of discrete plaques and fibrils. Clusters of acetylcholine receptors that form on muscle cells cultured without nerve are invariably associated with adjacent, congruent plaques containing basal lamina proteoglycan. This is also true for clusters of junctional receptors formed during synaptogenesis in vitro. This correlation indicates that the spatial organization of receptor and proteoglycan is coordinately regulated, and suggests that interactions between these two species may contribute to the localization of acetylcholine receptors at the neuromuscular junction.  相似文献   

11.
Summary The ability of the collagen matrix form to support the formation of a basal lamina by cultured normal human epidermal keratinocytes (NHEK) was determined using transmission electron microscopy. The collagen matrix forms tested in this study were a) a dry type I collagen film and b) a type I collagen gel. NHEK were grown for 14 days on the following five different substrates: plain plastic culture dishes without the addition of collagen (PP); plain plastic culture dishes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-P); plain plastic culture dishes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-P); Millipore Millicell CM microporous membranes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-CM); and Millipore Millicell CM microporous membranes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-CM). NHEK maintained for 2 wk on PP and DCF-P were unable to secrete a basal lamina. NHEK grown for 2 wk on the GEL-P and GEL-CM substrates, however, secreted a contiguous basal lamina at the GEL-NHEK interface. To determine if the appearance of this basal lamina correlated with laminin synthesis, laminin was immunoprecipitated from cellular extracts, as well as media from the apical and basal chambers. NHEK grown on the GEL-P substrate synthesized more laminin than did NHEK grown on the other four alternative substrates. In addition, NHEK grown on GEL-CM were able to direct more laminin to the basal compartment than NHEK grown on DCF-CM substrates. Taken together, the data indicate that the matrix form of collagen can influence basal lamina deposition, laminin synthesis, and laminin trafficking in NHEK.  相似文献   

12.
Tendon organs from leg and forearm muscles of white leghorn chickens were examined with a library of monoclonal antibodies to determine the composition of their connective-tissue framework and the types of connective-tissue macromolecules that occur at the sites where muscle fibers attach to the receptors. The capsules of the tendon organs were positive for connective-tissue macromolecules typical of basal lamina (collagen type IV, laminin, and heparin sulfate proteoglycan) and for tenascin, collagen types III and VI, and fibronectin. Connective-tissue bundles in the lumen of a receptor reacted primarily with antibodies against collagen type I and 4-chondroitin sulfate. The narrow partitions that divide each lumen into compartments stained for collagen type III. Toward its tendinous end, a receptor made few contacts with muscle fibers. Instead, the capsule and the collagenous bundles blended gradually with the intermuscular portions of tendons. At the muscular end, the connections were more complex. Muscle fibers that attached in series to tendon organs split to produce basal lamina-covered, finger-like extensions, which were separated from each other by fissures. Tongues of connective tissue containing tenascin, collagen types I and VI, and fibronectin extended into the fissures. Distally the tongues were continuous with the tenascin in the capsule and just internal to the capsule, fibronectin and basal lamina macromolecules in the capsule, and collagen type I in the collagenous bundles. The uninterrupted presence of these macromolecules around terminating muscle fibers and in the capsule and/or the intraluminal collagen bundles suggests that muscle fibers that attach in series at the muscular end exert a force during muscular contraction on the intraluminal collagen bundles and on the receptor capsule.  相似文献   

13.
LS174T human colon cancer cells formed glandular structures with microvilli, tight junctions, desmosomes and basal laminae arranged in order as in normal intestinal epithelial cells when combined with fetal rat mesenchymes in organ culture. When cultured with type I collagen gel, they also formed glandular structures, but less efficiently than with the mesenchyme. In collagen gel-induced glandular structures, microvilli, tight junctions and desmosomes were arranged in order as in mesenchyme-induced ones, but basal laminae were never observed in contrast with mesenchyme-induced ones. These results indicate that basal lamina formation is not necessary for the glandular structure formation and that mesenchymes promote glandular structure formation of LS174T cells by supplying components necessary for basal lamina formation.  相似文献   

14.
A major impediment to successful implementation of gene therapy for treatment of muscular dystrophy is the restricted infectivity of mature muscle fibers with viral vectors. This phenomenon has been observed with adenovirus vectors and more recently with herpes simplex virus type 1 (HSV-1)-based vectors. Here we report findings of morphological studies designed to experimentally determine the mechanism underlying the rapid reduction in vector-mediated gene delivery concomitant with the maturation of muscle fibers. Using immunohistochemistry and confocal microscopy, we have colocalized HSV-1 and collagen IV, a major component of the basal lamina, in HSV-1-injected muscles and determined that the virus penetrates and expresses a transgene (lacZ) in muscle fibers of newborn animals but cannot efficiently penetrate adult myofibers. This was observed in normal as well as in immunocompromised animals, suggesting that the lack of adult myofiber transduction is not a result of an immune response and clearance of the viral vector. Since heparan sulfate proteoglycan, the initial attachment receptor for HSV-1, was shown to be preserved during the maturation of the myofibers by immunofluorescence assay and HSV-1 was able to infect isolated, viable myofibers in vitro, we suggest that the low-level HSV-1 transduction of mature myofibers is not a consequence of the loss of viral attachment sites on the surfaces of mature muscle fibers. Rather, our results indicate that the mature basal lamina acts as a physical barrier to HSV-1 infection of adult myofibers. This conclusion was further supported by the finding that HSV-1 displayed an intermediate level of transduction in mature dy/dy muscle which is defective for normal basal lamina formation. Together, these experiments suggest that efficient HSV vector transduction in mature skeletal muscle requires methods to permeabilize the basal lamina.  相似文献   

15.
Separated thyroid follicles are stable in suspension culture in Coon's modified Ham's F12 medium containing 0.5% calf serum. They resemble follicles in vivo except for the absence of a basal lamina. However, the epithelial cells reverse polarity and the follicles invert when the serum concentration is raised to 5%. A number of substances, especially components of extracellular matrix, were added to the medium to ascertain if they could stabilize the follicles against inversion in 5% serum. Cellular and plasma fibronectin, gelatin, heat-denatured collagen, methylcellulose and laminin did not stabilize. The addition to the medium of as little as 50 micrograms/ml of acid-soluble collagen prepared from calf skin or rat tail tendons resulted in the formation of small clouds of gel. Follicles embedded within the gel were stabilized. Follicles in the same dish but not embedded in the gel inverted. Stabilization was not specific for collagen, since follicles embedded in a plasma clot were also stabilized. A gel was not sufficient for stabilization, since embedding in an agarose gel did not stabilize. Ultrastructural studies indicate that adherence to a limited number of gelled fibers of collagen covering only a small fraction of the basal plasma membrane may be sufficient to stabilize and that a basal lamina formed in the presence of laminin but without added collagen does not stabilize.  相似文献   

16.
The basal lamina protein, laminin, has been shown to promote migration and proliferation of cultured skeletal myoblasts, resulting in increased myotube formation. However, skeletal myotubes adhere poorly to a laminin substrate, and long-term cultures of skeletal myotubes on laminin have not been achieved. We have found that cultured satellite cells from bupivacaine-damaged rat skeletal muscle actively proliferate and differentiate on a diluted Matrigel substrate composed of laminin, type IV collagen, heparan sulfate proteoglycan, and entactin. Myotubes cultured on diluted Matrigel are contractile and have never been observed to detach from the culture dish; rather, myotubes generally atrophy after 2-3 weeks in culture. Antibodies directed against the various protein components of Matrigel were used to determine the role of each component in enhancing muscle differentiation. Anti-laminin impaired satellite cell adhesion, whereas antibodies against either type IV collagen or heparan sulfate proteoglycan had no effect. Anti-entactin did not inhibit attachment, proliferation, or fusion of cultured satellite cells; however, myotubes exposed to anti-entactin failed to adhere to the culture dish after spontaneous myotube contractions began. We conclude that entactin is responsible for long-term maintenance and maturation of contractile skeletal myotubes on a diluted Matrigel substrate. This is the first study to assign a biological function for entactin in myogenesis.  相似文献   

17.
In an effort to reconstruct the cellular polarity normally found in the liver, adult rat hepatocytes were sandwiched between two layers of hydrated rat tail tendon collagen matrix. Functionally, sandwiched hepatocytes maintained the secretion of albumin, transferrin, fibrinogen, bile acids, and urea for at least 6 weeks, whereas cells cultured on a single layer of collagen gel ceased such secretion in 1-2 weeks. After 1 week of culture on a single layer of collagen gel, hepatocytes could still recover these lost functions when a second layer of collagen gel was applied. The exact nature of the substrate for constructing the sandwich system appeared to be unimportant as long as it allowed cellular attachment. Hepatocytes cultured in the sandwich system appeared to maintain a distribution of actin filaments similar to the in vivo state, whereas cells cultured on a single layer of collagen gel showed abnormal formation of stress fibers. These studies suggest that simple manipulations of the configuration of extracellular elements can dramatically alter the behavior of cultured hepatocytes.  相似文献   

18.
When thyroid follicles are isolated by collagenase treatment of minced thyroid lobes, the basal lamina around each follicle is removed. The basal lamina does not reform when follicles are cultured in suspension in Coon's modified Ham's F-12 medium containing, in addition, 0.5% calf serum, insulin, transferrin, and thyrotropin. We have added acid soluble collagen and/or laminin to see if they would result in the formation of a basal lamina. An extended basal lamina did not form when follicles were embedded in a gel formed from acid-soluble rat tendon collagen or from calf skin collagen when added at a concentration of 100 micrograms collagen/ml. However, laminin at a concentration of 5.1 micrograms/ml gave rise to short segments of a basal lamina within 30 min. At longer time intervals, the segments lengthened and covered the base of many cells, and were continuous across the gap between cells and across the mouth of a coated pit. Not all basal surfaces were covered, and no exposed apical surfaces with microvilli had a basal lamina. There was no obvious difference in the appearance of the basal lamina if collagen was added in addition to laminin, but collagen, in contact with the plasma membrane when added alone, was lifted off the membrane in the presence of the basal lamina. The basal lamina appeared denser if formed in the presence of 5% serum instead of 0.5%.  相似文献   

19.
Collagenase prevents in vitro the uropygial invaginations differentiation and the ectodermal glandular buds development. The basal lamina and the extracellular material disappear. These data suggest that collagen is essential to preen gland morphogenesis.  相似文献   

20.
Summary Smooth feather muscles (mm. pennati) consist of bundles of smooth muscle cells which are attached to the feather follicles by short elastic tendons. In addition, some muscle bundles are interrupted by elastic tendons. The elastic tendon is composed of longitudinally arranged elastic fibers which branch and wavy bundles of collagen fibrils. Smooth muscle cells of the muscle bundles are attached to each other by desmosome-like junctions and by fusion of the basal laminae. The cytoplasm of the muscle cells is characterized by conspicuous thick filaments and abundant thin and intermediate filaments. These are attached to band-like dense patches (dense bands) at the plasma membrane which are particularly broad at the tapering end of the muscle cell. The contact surface between smooth muscle cells and their elastic tendon is considerably increased (i) by deep finger-like invaginations and indentations located at the tapering muscle end, and (ii) by branching of the coarse elastic fibers into slender processes, which are attached to the richly folded surface of the muscle cell endings by peripheral microfibrils. This intimate interlocking closely resembles the myotendinous junctions in skeletal muscle. In addition to fibroblasts and fibrocytes, the myotendinous junction of the young growing chicks contains numerous so-called myofibroblasts, which are suggested to represent smooth muscle cells differentiating into fibroblasts of the developing tendon.Dedicated to Professor Dr. Helmut Leonhardt on the occasion of his 60th birthdaySupported by a grant from the Deutsche Forschungsgemeinschaft (Dr. 91/1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号