首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytochelatins (PCs) may function as a potential biomarker for metal toxicity. However, less attention has been paid to the effects of metal interactions on the production of PCs and glutathione (GSH), the most prominent cellular thiol. In the present study, the effects of interactions between cadmium (Cd) and plumbum (Pb) on the production of PCs and GSH were monitored over a period of 14 d in wheat (Triticum aestivum L.) tissues. The results showed that combination of Cd and Pb led to synergistic growth inhibition in wheat. Exposure to Cd or Pb increased levels of PCs in a concentration-, tissue-, and time-dependent manner. Cadmium was more effective that Pb in increasing PCs production. Compared with the effects of Cd or Pb alone on the production of PCs, the combination of Cd and Pb acted synergistically, resulting in an enhanced production of PCs. Cadmium also stimulated GSH production in a concentration-, tissue-, and time-dependent manner. However, Pb had no obvious effects on GSH levels. The combination of Pb and Cd antagonized GSH production over the course of the growth period. The results of the present study suggest that metal interactions should be considered in the application of PCs and GSH as potential biomarkers for the evaluation of metal toxicity.  相似文献   

2.
Heavy metals (HM) are a unique class of toxicants because they cannot be broken up into nontoxic forms. Excess HM causes stunted growth, upsets mineral nutrition, and affects membrane structure and permeability. High tolerance to HM toxicity is based on reduced metal uptake or increased internal sequestration in a genotype. Arbuscular mycorrhizal (AM) fungi are important rhizospheric microorganisms that occur in metal-contaminated soils and perhaps detoxify the potential effects of metals. The aim of this work was to study the role of the AM fungus Glomus mosseae in the alleviation of cadmium (Cd) and lead (Pb) toxicities in Cajanus cajan (L.) Millsp. (pigeonpea) genotypes. The effects of interactions between Cd (25 and 50 mg/kg) and Pb (500 and 800 mg/kg) on plant dry mass, nitrogen metabolism, and production of phytochelatins (PCs) and glutathione (GSH) were monitored with and without AM fungus in genotypes Sel-85N (relatively tolerant) and Sel-141-97 (sensitive). Cd treatments were more toxic than Pb, and their combinations led to synergistic inhibitions to growth and nitrogen-fixing potential (acetylene reduction activity [ARA]) in both genotypes. However, the effects were less deleterious in Sel-85N than in Sel-141-97. Exposure to Cd and Pb significantly increased the levels of PCs in a concentration- and genotype-dependent manner, which could be directly correlated with the intensity of mycorrhizal infection (MI). Stimulation of GSH production was observed under Cd treatments, although no obvious effects on GSH levels were observed under Pb treatments. The metal contents (Cd, Pb) were higher in roots and nodules when compared with that in shoots, which was significantly reduced in the presence of AM fungi. The results indicated that PCs and GSH might function as potential biomarkers for metal toxicity, and microbial inoculations showed bioremediation potential by helping pigeonpea plants to grow in multimetal contaminated soils.  相似文献   

3.
孙琴  王晓蓉  袁信芳  丁士明 《生态学报》2004,24(12):2804-2809
采用溶液培养方式 ,研究了有机酸存在下小麦体内 Cd的生物毒性和植物络合素 (PCs)合成的相关关系 ,试图寻求一种与小麦体内 Cd的生物毒性高度相关的评价指标。结果显示 ,Cd胁迫对小麦产生明显的毒害效应并诱导小麦根系内 PCs的大量合成。EDTA、DTPA、柠檬酸、苹果酸和草酸的适量供应可不同程度减轻或消除 Cd的生物毒性 ,其强弱顺序为 EDTA >DTPA 柠檬酸 >苹果酸≈草酸。与此同时 ,小麦根系内 PCs的诱导量也有明显下降 ,与 Cd的生物毒性保持一定的线性关系 ,且在EDTA、DTPA和柠檬酸供应下尤为显著。表明 PCs可以作为一项敏感的生化指标 (biochem ical indicator)用来评价和预测环境中 Cd的污染 ,并有望成为重金属生物有效性评价系统中一种新的补充方法  相似文献   

4.
Phytoplankton deal with metal toxicity using a variety of biochemical strategies. One of the strategies involves glutathione (GSH) and phytochelatins (PCs), which are metal‐binding thiol peptides produced by eukaryotes and these compounds have been related to several intracellular functions, including metal detoxification, homeostasis, metal resistance and protection against oxidative stress. This paper assesses our state of knowledge on the production of PCs and GSH by marine phytoplankton in laboratory and field conditions and the possible applications of PCs for environmental purposes. Good relationships have been observed between metal exposure and PC production in phytoplankton in the laboratory with Cd, Pb, and Zn showing the greatest efficacy, thereby indicating that PCs have a potential for application as a biomarker. Fewer studies on PC distributions in particulate material have been undertaken in the field. These studies show that free Cu has a strong relationship with the levels of PC in the particulate material. The reason for this could be because Cu is a common contaminant in coastal waters. However it could also be due to the lack of measurements of other metals and their speciation. GSH shows a more complex relationship to metal levels both in the laboratory and in the field. This is most likely due to its multifunctionality. However, there is evidence that phytoplankton act as an important source of dissolved GSH in marine waters, which may form part of the strong organic ligands that control metal speciation, and hence metal toxicity.  相似文献   

5.
The aim of the present study was to evaluate the role of arbuscular mycorrhizal (AM) fungi on metal uptake, oxidative effects and antioxidant defence mechanisms under cadmium (Cd) and lead (Pb) stresses in Cajanus cajan (L.) Millsp. (pigeonpea). Treatments consisted of two concentrations each of Cd (25 and 50 mg/kg of soil) and Pb (500 and 800 mg/kg of soil) singly as well as in combination. Both metals induced oxidative damage through increased lipid peroxidation, electrolyte leakage and hydrogen peroxide levels, but Cd was found to be more toxic than Pb. Compared with the effects of Cd or Pb alone, the combination of Cd and Pb acted synergistically; however, Pb immobilisation in soil controlled the uptake of Cd in plants. There was a direct correlation between the type of genotype, heavy metal content and oxidative damage in concentration dependent manner. Superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) increased under stress. The toxicity symptoms of the metal stress were significantly higher in Sel-141-97 genotype when compared with Sel-85 N. The high ratio of glutathione to its oxidised form, glutathione disulfide (GSH/GSSG), could be restored by means of higher glutathione reductase (GR) activity and increased GSH synthesis in mycorrhizal stressed plants. AM inoculations with Glomus mosseae significantly arrested uptake of Cd and Pb into the root system and further translocation into the above ground parts and led to decreased lipid peroxidation and electrolyte leakage. Increased activities of SOD, CAT, POX as well as GR were observed in all mycorrhizal stressed plants.  相似文献   

6.
We tested the mode of action of Cd on photosynthesis and activities of ATP-sulfurylase (ATP-S), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and on contents of phytochelatins (PCs) and glutathione (GSH) in two cultivars of wheat (Triticum aestivum L.) PBW-343 and WH-542 differing in yield potential. Cd treatment increased Cd content and photosynthetic activity in PBW-343 more than in WH-542. The activities of APX, GR, ATP-S, and synthesis of PCs and GSH were also increased by Cd, but the CAT and SOD activities were inhibited in both the cultivars. The efficient functioning of antioxidative enzymes, production of PCs and GSH, helped in counteracting the effects of Cd namely in PBW-343, protected photosynthetic ability, and increased the tolerance to Cd.  相似文献   

7.
Greenhouse hydroponic experiments were conducted using Cd-sensitive (Xiushui63) and tolerant (Bing97252) rice genotypes to evaluate genotypic differences in response of photosynthesis and phytochelatins to Cd toxicity in the presence of exogenous glutathione (GSH). Plant height, chlorophyll content, net photosynthetic rate (Pn), and biomass decreased in 5 and 50 μM Cd treatments, and Cd-sensitive genotype showed more severe reduction than the tolerant one. Cadmium stress caused decrease in maximal photochemical efficiency of PSII (Fv/Fm) and effective PSII quantum yield [Y(II)] and increase in quantum yield of regulated energy dissipation [Y(NPQ)], with changes in Cd-sensitive genotype being more evident. Cadmium-induced phytochelatins (PCs), GSH, and cysteine accumulation was observed in roots of both genotypes, with markedly higher level in PCs and GSH on day 5 in Bing97252 compared with that measured in Xiushui63. Exogenous GSH significantly alleviated growth inhibition in Xiushui63 under 5 μM Cd and in both genotypes in 50 μM Cd. External GSH significantly increased chlorophyll content, Pn, Fv/Fm, and Y(II) of plants exposed to Cd, but decreased Y(NPQ) and the coefficient of non-photochemical quenching (qN). GSH addition significantly increased root GSH content in plants under Cd exposure (except day 5 of 50 μM Cd) and induced up-regulation in PCs of 5 μM-Cd-treated Bing97252 throughout the 15-day and Xiushui63 of 5-day exposure. The results suggest that genotypic difference in the tolerance to Cd stress was positively linked to the capacity in elevation of GSH and PCs, and that alleviation of Cd toxicity by GSH is related to significant improvement in chlorophyll content, photosynthetic performance, and root GSH levels.  相似文献   

8.
Sedum alfredii has been reported to be a cadmium (Cd) hyperaccumulator. Phytochelatins (PCs) and other thiol (SH)-containing compounds have been proposed to play an important role in the detoxification and tolerance of some heavy metals, but it is not clear whether PCs are responsible for Cd hyperaccumulation and tolerance in S. alfredii. In this study, two geographically isolated populations of S. alfredii were studied: one population grew on an old Pb/Zn mine site, while the other on a non-mine site. The mine population of this species exhibited a stronger heavy metal tolerance than in the other population. Root-to-shoot transport of Cd was higher in population located at the mine site than at the non-mine site. Considerable amounts of Cd were accumulated in leaves and stems of mine plants, while most Cd was distributed in roots of non-mine plants. Non-protein SH in plant tissues of two populations were further investigated by a HPLC pre-column derivatization system. Upon exposure to Cd, no PCs were detected in all tissues of mine population, while an appreciable amount of glutathione (GSH) was observed in the descending order of stem>root>leaf. The concentrations of GSH consistently increased with the increase of exogenous Cd concentrations and time. On the contrary, Cd exposure strongly induced the production of PCs (mainly PC(2) and PC(3)) and GSH in plant tissues of non-mine population, and the concentrations of GSH showed an initial drop over the duration of 7-d exposure. The present results provided strong evidence that PCs are not involved in Cd transport, hyperaccumulation and tolerance in mine population of S. alfredii.  相似文献   

9.
采用水培方式,研究了不同环境因子对小麦体内Cd的生物毒性与植物络合素(PCs)合成的影响.结果表明,Cd胁迫对小麦产生明显的毒害效应,并显著诱导根合成PCs;pH、Ca和S对小麦体内Cd的吸收和生物毒性具有不同程度的影响,根中PCs的诱导量与Cd的生物毒性变化表现一致;供磷减轻了Cd胁迫的生物毒性,根中PCs的诱导量也显著降低;镁对Cd胁迫的生物毒性影响甚微,根中PCs的诱导量和Cd的吸收量均未见明显变化.本实验结果证明Cd对PCs的诱导能力与植物体内Cd的毒性之间存在一定的相关关系,可将PCs作为Cd胁迫的生物标记物.  相似文献   

10.
The overexpression of either γ-glutamylcysteine synthetase (γ-ECS) or glutathione synthetase (GS) in Brassica juncea transgenics was shown previously to result in higher accumulation of glutathione (GSH) and phytochelatins (PCs), as well as enhanced Cd tolerance and accumulation. The present study was aimed at analyzing the effects of γ-ECS or GS overexpression on tolerance to and accumulation of other metal/loids supplied individually in agar medium (seedlings) or in hydroponics (mature plants). Also, as pollution in nature generally consists of mixtures of metals, glutamylcysteine synthetase (ECS) and GS seedlings were tested on combinations of metals. Compared to wild-type plants, ECS and GS transgenics exhibited a significantly higher capacity to tolerate and accumulate a variety of metal/loids (particularly As, Cd, and Cr) as well as mixed-metal combinations (As, Cd, Zn/As, Pb, and Zn). This enhanced metal tolerance and accumulation of the ECS and GS transgenics may be attributable to enhanced production of PCs, sustained by a greater availability of GSH as substrate, as suggested by their higher concentrations of GSH, PC2, PC3, and PC4 as compared to wild-type plants. Overexpression of GS and γ-ECS may represent a promising strategy for the development of plants with an enhanced phytoremediation capacity for mixtures of metals.  相似文献   

11.
以茭白(Zizania latifoliaTurcz.)的单季茭品种‘蒋墅茭’和双季茭品种‘葑红早’为试材,进行Cd2+、Pb2+的单一及复合胁迫处理,测定了茭白根系和叶片中的非蛋白巯基(NPT)、谷胱甘肽(GSH)、植物络合素(PCs)的含量,同时测定了茭白植株各亚细胞组分中Cd2+、Pb2+的积累量,以探讨茭白对重金属镉、铅胁迫的耐性机理。结果表明:Cd2+、Pb2+的单一及其复合胁迫均能促进两茭白品种根系和叶片中NPT、GSH、PCs的含量及茭白各亚细胞组分中Cd2+、Pb2+积累量的显著增加;复合胁迫时两茭白品种的NPT、GSH、PCs含量及各亚细胞组分中Cd2+、Pb2+的积累量均高于单一胁迫,茭白的不同部位间,以根系中的NPT、GSH、PCs含量显著高于叶片;茭白各亚细胞组分中Cd2+、Pb2+的积累量表现为:细胞壁高于原生质体,而可溶性部分高于细胞器。  相似文献   

12.
外源钙对黑藻抗镉胁迫能力的影响   总被引:4,自引:0,他引:4  
以分布广泛的沉水植物——黑藻为实验材料,对比研究了Cd胁迫和施加适宜浓度的外源Ca后,黑藻体内Cd积累、矿质营养、光合色素、可溶性蛋白、渗透调节物质、抗氧化能力以及非蛋白巯基(NP-SH)和植物络合素(PCs)的变化,以探讨Ca缓解水生植物Cd毒害的生理生化机制。结果表明:(1)Cd胁迫使黑藻体内Cd含量极显著增加,并造成明显的矿质营养失衡,主要表现为显著降低了P、K、Fe、Cu、Mn的含量,而外源Ca则削弱了黑藻对Cd的蓄积,并在一定程度上减轻了Cd胁迫所造成的矿质元素失衡;(2)Cd处理使黑藻体内叶绿素含量、叶绿素a/b值和可溶性蛋白含量大幅度下降并显著降低了黑藻的总抗氧化能力(T-AOC)和小分子保护物质[谷胱甘肽(GSH)、抗坏血酸(AsA)]的含量,而外源Ca延缓了黑藻的失绿症状,促进了可溶性蛋白的合成并提高了黑藻的抗氧化能力;(3)Cd胁迫使黑藻体内脯氨酸积累显著,而外施Ca减缓了其积累;可溶性糖变化趋势与之相反;(4)Cd胁迫诱导了NP-SH和PCs在黑藻体内的大量累积,外源Ca处理后,其增加幅度减小。以上结果说明外源Ca能通过抑制Cd的吸收,促进光合色素、可溶性蛋白和可溶性糖的合成,维持高的总抗氧化能力和抗氧化物质含量以及矿质营养平衡等途径来增强黑藻对Cd胁迫的抗性。  相似文献   

13.
Phytochelatin (PC) plays an important role in heavy metal detoxification in plants and other living organisms. Therefore, we overexpressed an Arabidopsis PC synthase (AtPCS1) in transgenic Arabidopsis with the goal of increasing PC synthesis, metal accumulation, and metal tolerance in these plants. Transgenic Arabidopsis plants were selected, designated pcs lines, and analyzed for tolerance to cadmium (Cd). Transgenic pcs lines showed 12- to 25-fold higher accumulation of AtPCS1 mRNA, and production of PCs increased by 1.3- to 2.1-fold under 85 microM CdCl(2) stress for 3 d when compared with wild-type plants. Cd tolerance was assessed by measuring root length of plants grown on agar medium containing 50 or 85 microM CdCl(2). Pcs lines paradoxically showed hypersensitivity to Cd stress. This hypersensitivity was also observed for zinc (Zn) but not for copper (Cu). The overexpressed AtPCS1 protein itself was not responsible for Cd hypersensitivity as transgenic cad1-3 mutants overexpressing AtPCS1 to similar levels as those of pcs lines were not hypersensitive to Cd. Pcs lines were more sensitive to Cd than a PC-deficient Arabidopsis mutant, cad1-3, grown under low glutathione (GSH) levels. Cd hypersensitivity of pcs lines disappeared under increased GSH levels supplemented in the medium. Therefore, Cd hypersensitivity in pcs lines seems due to the toxicity of PCs as they existed at supraoptimal levels when compared with GSH levels.  相似文献   

14.
Phanerochaete chrysosporium are known to be vital hyperaccumulation species for heavy metal removal with admirable intracellular bioaccumulation capacity. This study analyzes the heavy metal-induced glutathione (GSH) accumulation and the regulation at the intracellular heavy metal level in P. chrysosporium. P. chrysosporium accumulated high levels of GSH, accompanied with high intracellular concentrations of Pb and Cd. Pb bioaccumulation lead to a narrow range of fluctuation in GSH accumulation (0.72–0.84 μmol), while GSH plummeted under Cd exposure at the maximum value of 0.37 μmol. Good correlations between time-course GSH depletion and Cd bioaccumulation were determined (R 2?>?0.87), while no significant correlations have been found between GSH variation and Pb bioaccumulation (R 2?<?0.38). Significantly, concentration-dependent molar ratios of Pb/GSH ranging from 0.10 to 0.18 were observed, while molar ratios of Cd/GSH were at the scope of 1.53–3.32, confirming the dominant role of GSH in Cd chelation. The study also demonstrated that P. chrysosporium showed considerable hypertolerance to Pb ions, accompanied with demand-driven stimulation in GSH synthesis and unconspicuous generation of reactive oxygen stress. GSH plummeted dramatically response to Cd exposure, due to the strong affinity of GSH to Cd and the involvement of GSH in Cd detoxification mechanism mainly as Cd chelators. Investigations into GSH metabolism and its role in ameliorating metal toxicity can offer important information on the application of the microorganism for wastewater treatment.  相似文献   

15.
以黄反、小麦为试验材料,以Cd、Pb复合浓度进行处理,研究了在不同处理水平下Cd、Pb在2种植物体内的分布,以及2种植物的叶绿素、脯氨酸含量、乙烯释放量的变化。结果表明,Cd、Pb主要累积于植物根部,不同复合浓度处理后,植物叶片中叶绿素含量下降,脯氨酸含量增高,乙烯释放量增加,并存在峰点。不同的植物及不同的浓度组合有着不同的影响,环境中Cd、Pb对植物的影响存在着相互作用。  相似文献   

16.
Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC–Cd and glutathione–Cd complexes.  相似文献   

17.
Phytochelatin synthase (PC synthase) catalyzes a biosynthesis of phytochelatins (PCs), which are small molecules and glutathione (GSH)-derived metal-binding peptides that are essential for the detoxification of heavy metal ions in plants, fungi and worms. In order to enhance tolerance to heavy metal cytotoxicity, mRNA coding for PC synthase from Arabidopsis thaliana (AtPCS1) was introduced into the early embryos of zebrafish. As a result, the heterogeneous expression of PC synthase and the synthesis of PCs from GSH in embryos could be detected. The developing embryos expressing PC synthase (PC-embryos) became more tolerant to Cd toxicity (500 microM exposure). PC-embryos had significantly longer apparent lethal times for 50% of the population (LT50) of 8.17+/-1.08 days, although control embryos had apparent LT50 of 5.43+/-0.66 days. These data suggest that PC synthase can function in developmental zebrafish, and that PCs are highly effective in detoxifying Cd toxicity even in the whole body of a vertebrate species.  相似文献   

18.
Biochemical indicators and in vitro models, if they mimic in vivo responses, offer potentially sensitive tools for inclusion in toxicity assessment programs. The purpose of this study was to determine whether the HepG2 cell line would mimic known in vivo or in vitro (or both) responses of mammalian systems when confronted with cadmium (Cd2+). Uptake and compartmentalization of Cd2+, metallothionein (MT) compartmentalization, and glutathione (GSH) depletion were examined. In addition, several cytotoxic and stress effects, e.g., viability (neutral red [NR] uptake, 3-[4,5-dimethylthiozole-2-yl]-2,5,-biphenyl tetrazolium bromide [MTT] dye conversion, and live/dead [L/D]), membrane damage (lactate dehydrogenase leakage), metabolic activity (adenosine triphosphate levels), and detoxification capabilities (GSH content, cytochrome P4501A1/2 [EROD (ethoxyresorufin-o-deethylase)] activity, and MT induction), were measured in both naive (no previous exposure) and Cd2+ preexposed cells. Cadmium uptake increased during a 24-h period. Metallothionein induction occurred in response to both Cd2+ and ZnCl2; however, Cd2+ was the more potent inducer. Both Cd2+ and MT were localized primarily in the cytoplasmic compartment. All biochemical responses, except EROD, showed concentration- response relationships, after 24-h exposure to Cd2+ (ranges 0-3 ppm [26.7 microM]). Cadmium effects were reduced in preexposed cells, indicating adaptive tolerance or increased resistance had occurred. Twenty-four-hour LC50, dose causing death of 50% of the test subjects, values were 0.97, 0.69, and 0.80 ppm (8.7, 6.2, and 7.2 microM) for naive cells and 1.45, 1.21, and 1.39 ppm (12.9, 10.7, and 12.3 microM) for preexposed cells based on the NR, MTT, and L/D assays, respectively. These data indicate that this carcinoma cell line is a useful in vitro model for cadmium toxicity studies.  相似文献   

19.
Effects of lead (Pb) and cadmium (Cd) both alone or in combination on the binding of LH and FSH on isolated granulosa cells were studied. Granulosa cells isolated from proestrous rats were incubated (in vitro) with lead acetate and/or cadmium acetate (0.03 microM of Pb or Cd) for 1 hr. LH binding was dropped to 84% in Pb treated cells, 72.5% in Cd treated cells and 74.8% in combined metal treated cells compared to control. FSH binding dropped to 85.5% in Pb treated cells, 71.16% in Cd treated cells and 72.5% in combined metal treated cells compared to control. Activity of 17beta Hydroxy Steroid Dehydrogenase (17betaHSDH), a key steroidogenic enzyme was reduced by 52% in Cd and 37% in combined metal exposed cells whereas Pb exposed cells showed 31% reduction in the enzyme activity. Pretreatment with SH groups protectants (glutathione [GSH], dithiothretol [DTT]) and zinc caused an ameriolation in enzyme activity whereas Zn pretreatment showed an increase in gonadotropin binding in metal exposed cells. These results suggest that both Pb and Cd can cause a reduction in LH and FSH binding, which significantly alters steroid production in vitro and exerts a direct influence on granulosa cell function.  相似文献   

20.
Sun Q  Ye ZH  Wang XR  Wong MH 《Phytochemistry》2005,66(21):2549-2556
Phytochelatins (PCs) have been induced in a large range of plant species, but their role in heavy metal tolerance is unclear. Sedum alfredii is a new zinc (Zn) hyperaccumulator and lead (Pb) accumulator found in an old Pb/Zn mine in the Zhejiang Province of China. Until now, the mechanisms of its hyperaccumulation/accumulation and tolerance were poorly understood. The aim of this work was to investigate whether PCs were differentially produced in mine populations of S. alfredii compared with a non-mine control of the same species. The results showed that plants from the mine site were more tolerant to increasing Zn and Pb concentrations than those from the control site. No PCs and cysteine (Cys) were detected by pre-column derivatization with HPLC fluorescence in any tissues of two populations at any treatment, which in turn indicated they were not responsible for Zn and Pb tolerance in the mine population. Instead, Zn and Pb treatments resulted in the increase of glutathione (GSH) for both populations in a tissue-dependent manner. Significant increases were observed in leaf, stem and root tissues of plants grown on the mine site. The results suggest that GSH, rather man PCs, may be involved in Zn and Pb transport, hyperaccumulation/accumulation and tolerance in mine population of S. alfredii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号