首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In pursuit of better treatment options for malignant tumors, metal-based complexes continue to show promise as attractive chemotherapeutics due to tunability, novel mechanisms, and potency exemplified by platinum agents. The metabolic character of tumors renders the mitochondria and other metabolism pathways fruitful targets for medicinal inorganic chemistry. Cumulative understanding of the role of mitochondria in tumorigenesis has ignited research in mitochondrial targeting metal-based complexes to overcome resistance and inhibit tumor growth with high potency and selectivity. Here, we discuss recent progress made in third row transition metal-based mitochondrial targeting agents with the goal of stimulating an active field of research toward new clinical anticancer agents and the elucidation of novel mechanisms of action.  相似文献   

2.
Many proteolytic enzymes of parasitic nematodes have been identified as possible targets of control. Testing these as vaccine or drug targets is often difficult due to the problems of expressing proteases in a correctly folded, active form in standard expression systems. In an effort to overcome these difficulties we have tested Caenorhabditis elegans as an expression system for a Haemonchus contortus cathepsin L cysteine protease, Hc-CPL-1. Recombinant Hc-CPL-1 with a polyhistidine tag added to the C-terminal was expressed in an active and glycosylated form in C. elegans. Optimal expression was obtained expressing Hc-cpl-1 under control of the promoter of the homologous C. elegans cpl-1 gene. The recombinant protein was purified from liquid cultures by nickel chelation chromatography in sufficient amounts for vaccination studies to be carried out. This study provides proof of principle that active, post-translationally modified parasitic nematode proteases can be expressed in C. elegans and this approach can be extended for expression of known protective antigens.  相似文献   

3.
Cathepsins play an important role in several human disorders and therefore the design and synthesis of their inhibitors attracts considerable interest in current medicinal chemistry approaches. Due to the presence of a strong sulphydryl nucleophile in the active center of the cysteine type cathepsins, most strategies to date have yielded covalent inhibitors. Here we present a series of non-covalent β-amino-α-hydroxyalkanephosphonate dipeptidic inhibitors of cathepsin C, ranking amongst the best low-molecular weight inhibitors of this enzyme. Their binding modes determined by molecular modelling indicate that the hydroxymethyl fragment of the molecule, not the phosphonate moiety, acts as a transition state analogue of peptide bond hydrolysis. These dipeptide mimetics appear also to be potent inhibitors of other cysteine proteases such as papain, cathepsin B and cathepsin K, thus providing new leading structures for these medicinally important enzymes.  相似文献   

4.
Gold compounds form a new class of promising metal-based drugs with a number of potential therapeutic applications, particularly in the fields of anticancer and antimicrobial treatments. Previous research revealed that a group of structurally diverse gold compounds cause conspicuous inhibition of the protease activities of the human proteasome. Given the pharmacological importance of protease inhibition, the present study further explored whether these gold compounds might inhibit a few other proteases that are accepted druggable targets for disease treatment. In particular, four distinct cysteine proteases were considered here: cathepsin B and L that play a primary role in tumor-cell invasion and metastasis; rhodesain, the major cathepsin L-like cysteine protease of Trypanosoma brucei rhodesiense and CPB2.8ΔCTE, a Leishmania mexicana mature cysteine protease. Based on the encouraging results obtained for some of the tested gold compounds on the two parasitic cysteine proteases, especially against CPB2.8ΔCTE, with IC50s in the micromolar range, we next evaluated whether those gold compounds might contrast effectively the growth of the respective protozoa and indeed important antiprotozoal properties were disclosed; on the other hand a certain lack of selectivity was highlighted. Also, no direct or clear correlation could be established between the in vitro antiprotozoal properties and the level of protease inhibition. The implications of these results are discussed in relation to possible pharmaceutical applications.  相似文献   

5.
Inhibition of cysteine proteases is emerging as an important strategy for the treatment of a variety of human diseases. Intense efforts involving structure-based inhibitor design have been directed toward several cysteine proteases, including cathepsin K, calpain, human rhinovirus 3C protease and several parasitic cysteine protease targets. Other successful recent efforts have involved combinatorial synthesis and screening for identification of new inhibitor templates.  相似文献   

6.
Cysteine proteinases have now been detected in most of the important species of parasitic protozoa. Characterization of the enzymes and sequence determinations have revealed that the enzymes are related to papain and the mammalian cathepsins. All of the protozoan enzymes analyzed to date are members of the cathepsin L/cathepsin H/papain branch of the papain superfamily and are more distantly related to cathepsin B. They thus share some characteristics with the cysteine proteinases of their hosts. Individual enzymes, however, are likely to have sufficient novel features to be potential targets for specific antiprotozoal drugs, and a number of proteinase inhibitors and substrates are currently being tested as possible chemotherapeutic agents.  相似文献   

7.
The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ~ 2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts.  相似文献   

8.

Background

Trypanosoma brucei is the etiological agent of Human African Trypanosomiasis, an endemic parasitic disease of sub-Saharan Africa. TbCatB and rhodesain are the sole Clan CA papain-like cysteine proteases produced by the parasite during infection of the mammalian host and are implicated in the progression of disease. Of considerable interest is the exploration of these two enzymes as targets for cysteine protease inhibitors that are effective against T. brucei.

Methods and Findings

We have determined, by X-ray crystallography, the first reported structure of TbCatB in complex with the cathepsin B selective inhibitor CA074. In addition we report the structure of rhodesain in complex with the vinyl-sulfone K11002.

Conclusions

The mature domain of our TbCat•CA074 structure contains unique features for a cathepsin B-like enzyme including an elongated N-terminus extending 16 residues past the predicted maturation cleavage site. N-terminal Edman sequencing reveals an even longer extension than is observed amongst the ordered portions of the crystal structure. The TbCat•CA074 structure confirms that the occluding loop, which is an essential part of the substrate-binding site, creates a larger prime side pocket in the active site cleft than is found in mammalian cathepsin B-small molecule structures. Our data further highlight enhanced flexibility in the occluding loop main chain and structural deviations from mammalian cathepsin B enzymes that may affect activity and inhibitor design. Comparisons with the rhodesain•K11002 structure highlight key differences that may impact the design of cysteine protease inhibitors as anti-trypanosomal drugs.  相似文献   

9.
In the search for new therapeutic tools against Chagas disease (American trypanosomiasis) palladium and platinum complexes of the bioactive ligand pyridine-2-thiol N-oxide were exhaustively characterized and evaluated in vitro. Both complexes showed high in vitro growth inhibition activity (IC(50) values in the nanomolar range) against Trypanosoma cruzi, the causative agent of the disease. They were 39-115 times more active than the antitrypanosomal drug Nifurtimox. The palladium complex showed an approximately threefold enhancement of the activity compared with the parent compound. In addition, owing to their low unspecific cytotoxicity on mammalian cells, the complexes showed a highly selective antiparasite activity. To get an insight into the mechanism of action of these compounds, DNA, redox metabolism (intraparasite free-radical production) and two parasite-specific enzymes absent in the host, namely, trypanothione reductase and NADH-fumarate reductase, were evaluated as potential parasite targets. Additionally, the effect of metal coordination on the free radical scavenger capacity previously reported for the free ligand was studied. All the data strongly suggest that trypanocidal action of the complexes could mainly rely on the inhibition of the parasite-specific enzyme NADH-fumarate reductase.  相似文献   

10.
The triazolopyrimidine scaffold represents one of the privileged structure in chemistry, and there has been an increase in number of studies utilizing this scaffold and its derivatives. Optimization of synthetic protocols such as aza-Wittig reaction, [3 + 2] cycloaddition reaction along with previous methods including condensation with 1,3-dicarbonyl substrates and oxidation of aminopyrimidine Schiff bases have been performed to obtain desired triazolopyrimidines. The triazolopyrimidine ring has been extensively used as a template in medicinal chemistry for its diverse pharmacological properties. Several medicinally active molecules possessing triazolopyrimidine scaffold, either fused or coupled with other heterocycles, have been reported in the literature, highlighting the significance of this nucleus. Interestingly, the unique triazolopyrimidine scaffold also exhibits an impressive potential as a ligand for the synthesis of several metal complexes with significant biological potential. Literature provides enough evidence of exhaustive exploration of this scaffold as a ligand for the chelates of platinum, ruthenium and other metals. This review aims to be a comprehensive and general summary of the different triazolopyrimidine syntheses, their use as ligands for the synthesis and development of metal complexes as medicinal agents and their main biological activities.  相似文献   

11.
A new class of inhibitors for cysteine proteases cathepsin B, L, K and S is described. These inhibitors are based on the beta-lactam ring designed to interact with the nucleophilic thiol of the cysteine in the active site of cysteine proteases. Some 3-acylamino-azetidin-2-one derivatives showed very potent inhibition activities for cathepsins L, K and S at the nanomolar or subnanomolar IC(50) values.  相似文献   

12.
It has been over 80 years since the antiarthritic properties of gold(I) complexes were first recognized. However, a detailed understanding of their mechanism of action has been slow to develop. One likely biological target of gold(I) is the cathepsin family of lysosomal cysteine proteases, enzymes involved in the inflammation and joint destruction that are hallmarks of rheumatoid arthritis (RA). We have previously shown that analogs of auranofin, a clinically available antiarthritic drug, inhibit cathepsin B. In this study, the extent to which the steric and electronic properties of the phosphine ligand can be modified to obtain enhanced potency against cathepsin B is investigated.  相似文献   

13.
The synthesis and biological evaluation of platinum(II) amine complexes designed to act as inhibitors of the human cysteine protease cathepsin B, a thiol-dependent enzyme, is described. The complexes, composed of a cathepsin targeting ligand and a platinum(II) moiety with varying degrees of reactivity towards nucleophiles were characterized by physical-analytical methods and a proof of principle was illustrated in a model reaction. In biological tests for inhibitory activity against cathepsin B the presented compounds did not show significant inhibitory activity.  相似文献   

14.
半胱氨酸蛋白酶拟肽抑制剂设计新进展   总被引:2,自引:0,他引:2  
半胱氨酸蛋白酶包括多种酶,这些酶在广泛的生命过程中发挥作用。人类正常的半胱氨酸蛋白酶表达失调,寄生虫、病毒的半胱氨酸蛋白酶表达与多种病理情况相关。对于这类疾病,抑制半胱氨酸蛋白酶是一个可行的药物治疗策略。当前这类药物设计的目标是3种结构不同的半胱氨酸蛋白酶,即木瓜蛋白酶家族、半胱氨酸-天冬氨基特异性蛋白酶家族(caspases)和小核糖核酸病毒科半胱氨酸蛋白酶抑制剂家族。本文综述了近年来有关半胱氨酸蛋白酶抑制剂的设计思路。  相似文献   

15.
Thiol-based redox metabolism of protozoan parasites   总被引:4,自引:0,他引:4  
The review considers redox enzymes of Plasmodium spp., Trypanosomatida, Trichomonas, Entamoeba and Giardia, with special emphasis on their potential use as targets for drug development. Thiol-based redox systems play pivotal roles in the success and survival of these parasitic protozoa. The synthesis of cysteine, the key molecule of any thiol metabolism, has been elucidated in trypanosomatids and anaerobes. In trypanosomatids, trypanothione replaces the more common glutathione system. The enzymes of trypanothione synthesis have recently been identified. The role of trypanothione in the detoxification of reactive oxygen species is reflected in the multiplicity of trypanothione-dependent peroxidases. In Plasmodium falciparum, the crystal structures of glutathione reductase and glutamate dehydrogenase are now available; another drug target, thioredoxin reductase, has been demonstrated to be essential for the malarial parasite.  相似文献   

16.
Proteases perform numerous vital functions in flatworms, many of which are likely to be conserved throughout the phylum Platyhelminthes. Within this phylum are several parasitic worms that are often poorly characterized due to their complex life-cycles and lack of responsiveness to genetic manipulation. The flatworm Schmidtea mediterranea, or planaria, is an ideal model organism to study the complex role of protein digestion due to its simple life cycle and amenability to techniques like RNA interference (RNAi). In this study, we were interested in deconvoluting the digestive protease system that exists in the planarian gut. To do this, we developed an alcohol-induced regurgitation technique to enrich for the gut enzymes in S. mediterranea. Using a panel of fluorescent substrates, we show that this treatment produces a sharp increase in proteolytic activity. These enzymes have broad yet diverse substrate specificity profiles. Proteomic analysis of the gut contents revealed the presence of cysteine and metallo-proteases. However, treatment with class-specific inhibitors showed that aspartyl and cysteine proteases are responsible for the majority of protein digestion. Specific RNAi knockdown of the cathepsin B-like cysteine protease (SmedCB) reduced protein degradation in vivo. Immunohistochemistry and whole-mount in situ hybridization (WISH) confirmed that the full-length and active forms of SmedCB are found in secretory cells surrounding the planaria intestinal lumen. Finally, we show that the knockdown of SmedCB reduces the speed of tissue regeneration. Defining the roles of proteases in planaria can provide insight to functions of conserved proteases in parasitic flatworms, potentially uncovering drug targets in parasites.  相似文献   

17.
18.
Metal-based anticancer agents occupy a distinct chemical space due to their particular coordination geometry and reactivity. Despite the initial DNA-targeting paradigm for this class of compounds, it is now clear that they can also be tuned to target proteins in cells, depending on the metal and ligand scaffold. Since metallodrug discovery is dominated by phenotypic screenings, tailored proteomics strategies were crucial to identify and validate protein targets of several investigative and clinically advanced metal-based drugs. Here, such experimental approaches are discussed, which showed that metallodrugs based on ruthenium, gold, rhenium and even platinum, can selectively and specifically target proteins with clear-cut down-stream effects. Target identification strategies are expected to support significantly the mechanism-driven clinical translation of metal-based drugs.  相似文献   

19.
Papain-like cysteine proteases of pathogenic protozoa play important roles in parasite growth, differentiation and host cell invasion. The main cysteine proteases of Trypanosoma cruzi (cruzipain) and of Trypanosoma brucei (brucipain) are validated targets for the development of new chemotherapies. These proteases are synthesized as precursors and activated upon removal of the N-terminal prodomain. Here we report potent and selective inhibition of cruzipain and brucipain by the recombinant full-length prodomain of cruzipain. The propeptide did not inhibit human cathepsins S, K or B or papain at the tested concentrations, and moderately inhibited human cathepsin V. Human cathepsin F was very efficiently inhibited (K(i) of 32 pm), an interesting finding indicating that cruzipain propeptide is able to discriminate cathepsin F from other cathepsin L-like enzymes. Comparative structural modeling and analysis identified the interaction between the beta1p-alpha3p loop of the propeptide and the propeptide-binding loop of mature enzymes as a plausible cause of the observed inhibitory selectivity.  相似文献   

20.
Thiolate-hemin complexes as chemical models for cytochrome P-450 have been shown to cause cleavage of DNA. The cleavage of DNA to open-circular and linear forms depended on the structure of thiol ligand and the thiol ligand:hemin ratio at pH 7.8. Complete cleavage of DNA was observed by complexes containing thioglycolate ethylester and mercaptoethanol at 400-600 moles excess of thiol ligand to hemin, those containing cysteine, cysteine methylester and cysteine ethylester at 50-200 moles excess, and those containing mercaptopropionylglycine, glutathione, glutathione dimethylester, penta- and nonapeptides at 5-100 moles excess. Inhibition experiments suggested the involvement of active oxygen species in the cleavage of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号