首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golgi‐resident type–II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment‐specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N–acetylglucosaminyltransferase I (GnTI) for its cis/medial‐Golgi localization and for protein–protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well‐known trans‐Golgi enzyme α2,6–sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co‐localization analysis and N–glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial‐Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub‐Golgi localization was not able to complement the GnTI‐dependent glycosylation defect. Our results suggest that sequence‐specific features in the transmembrane domain of GnTI account for its steady‐state distribution in the cis/medial‐Golgi in plants, which is a prerequisite for efficient N–glycan processing in vivo.  相似文献   

2.
The tobacco mosaic virus (TMV) movement protein (MP) required for the cell-to-cell spread of viral RNA interacts with the endoplasmic reticulum (ER) as well as with the cytoskeleton during infection. Whereas associations of MP with ER and microtubules have been intensely investigated, research on the role of actin has been rather scarce. We demonstrate that Nicotiana benthamiana plants transgenic for the actin-binding domain 2 of Arabidopsis (Arabidopsis thaliana) fimbrin (AtFIM1) fused to green fluorescent protein (ABD2:GFP) exhibit a dynamic ABD2:GFP-labeled actin cytoskeleton and myosin-dependent Golgi trafficking. These plants also support the movement of TMV. In contrast, both myosin-dependent Golgi trafficking and TMV movement are dominantly inhibited when ABD2:GFP is expressed transiently. Inhibition is mediated through binding of ABD2:GFP to actin filaments, since TMV movement is restored upon disruption of the ABD2:GFP-labeled actin network with latrunculin B. Latrunculin B shows no significant effect on the spread of TMV infection in either wild-type plants or ABD2:GFP transgenic plants under our treatment conditions. We did not observe any binding of MP along the length of actin filaments. Collectively, these observations demonstrate that TMV movement does not require an intact actomyosin system. Nevertheless, actin-binding proteins appear to have the potential to exert control over TMV movement through the inhibition of myosin-associated protein trafficking along the ER membrane.  相似文献   

3.
The tonoplast was proposed as a default destination of membrane-bound proteins without specific targeting signals. To investigate the nature of this targeting, we created type I fusion proteins with green fluorescent protein followed by the transmembrane domain of the human lysosomal protein LAMP1. We varied the length of the transmembrane domain from 23 to either 20 or 17 amino acids by deletion within the hydrophobic domain. The resulting chimeras, called TM23, TM20, and TM17, were expressed either transiently or stably in tobacco. TM23 clearly accumulated in the plasmalemma, as confirmed by immunoelectron microscopy. In contrast, TM17 clearly was retained in the endoplasmic reticulum, and TM20 accumulated in small mobile structures. The nature of the TM20-labeled compartments was investigated by coexpression with a marker localized mainly in the Golgi apparatus, AtERD2, fused to a yellow fluorescent protein. The strict colocalization of both fluorescent proteins indicated that TM20 accumulated in the Golgi apparatus. To further test the default destination of type I membrane proteins, green fluorescent protein was fused to the 19-amino acid transmembrane domain of the plant vacuolar sorting receptor BP-80. The resulting chimera also accumulated in the Golgi instead of in post-Golgi compartments, where native BP-80 localized. Additionally, when the transmembrane domain of BP-80 was lengthened to 22 amino acids, the reporter escaped the Golgi and accumulated in the plasma membrane. Thus, the tonoplast apparently is not a favored default destination for type I membrane proteins in plants. Moreover, the target membrane where the chimera concentrates is not unique and depends at least in part on the length of the membrane-spanning domain.  相似文献   

4.
5.
We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER.  相似文献   

6.
Plant N -glycan processing enzymes are arranged along the early secretory pathway, forming an assembly line to facilitate the step-by-step modification of oligosaccharides on glycoproteins. Thus, these enzymes provide excellent tools to study signals and mechanisms, promoting their localization and retention in the endoplasmic reticulum (ER) and Golgi apparatus. Herein, we focused on a detailed investigation of amino acid sequence motifs present in their short cytoplasmic tails in respect to ER export. Using site-directed mutagenesis, we determined that single arginine/lysine residues within the cytoplasmic tail are sufficient to promote rapid Golgi targeting of Golgi-resident N -acetylglucosaminyltransferase I (GnTI) and α-mannosidase II (GMII). Furthermore, we reveal that an intact ER export motif is essential for proper in vivo function of GnTI. Coexpression studies with Sar1p provided evidence for COPII-dependent transport of GnTI to the Golgi. Our data provide evidence that efficient ER export of Golgi-resident plant N -glycan processing enzymes occurs through a selective mechanism based on recognition of single basic amino acids present in their cytoplasmic tails.  相似文献   

7.
UDP-GlcNAc:alpha 3-D-mannoside beta 1,2-N-acetylglucosaminyltransferase I (GnTI) is an N(in)/C(out) (type II) membrane protein, localized in the medial-Golgi, that initiates the conversion of high mannose N-glycans to complex N-glycans. Anti-rabbit GnTI antibodies were generated using a purified, enzymatically active, bacterial recombinant fusion protein as immunogen. Rabbit GnTI was effectively retained in the Golgi complex of transfected COS-1 cells and murine L cells, as assessed by indirect immunofluorescence using the species-specific anti-GnTI antibodies; no surface expression of rabbit GnTI could be detected in the transfected cells. Rabbit GnTI, stably expressed in murine L cells, was localized by immunoperoxidase electron microscopy to the medial-cisternae of the Golgi stack. The role of the transmembrane domain of GnTI in Golgi localization was examined by generation of a hybrid construct containing the amino-terminal 31 amino acids of GnTI, corresponding to the 25-residue transmembrane (signal/anchor) domain and flanking hydrophilic sequences, fused with ovalbumin; this ovalbumin/GnTI hybrid molecule was retained in the Golgi complex of transfected COS cells and stably transfected murine L cells. No surface expression of ovalbumin/GnTI was detected. In contrast, ovalbumin fused to the equivalent domains of the human transferrin receptor, a type II cell-surface protein, was efficiently expressed on the cell surface of transfected cells. The ovalbumin/GnTI hybrid molecules in the transfected L cells were N-glycosylated, indicating an N(in)/C(out) membrane orientation, and were localized by immunoperoxidase electron microscopy to one or two cisternae of the medial-Golgi (90% of stained Golgi profiles showed medial-cisternae staining). These results show that a signal contained within the transmembrane domain and flanking residues of GnTI specifies medial-Golgi localization.  相似文献   

8.
Porcine epidemic diarrhea virus (PEDV) causes acute enteritis in pigs of all ages and is often fatal for neonates. A tobacco mosaic virus (TMV)-based vector was utilized for the expression of a core neutralizing epitope of PEDV (COE) for the development of a plant-based vaccine. In this study, the coding sequence of a COE gene was optimized based on the modification of codon usage in tobacco plant genes and the removal of mRNA-destabilizing sequences. The native and synthetic COE genes were cloned into TMV-based vectors and expressed in tobacco plants. The recombinant COE protein constituted up to 5.0% of the total soluble protein in the leaves of tobacco plants infected with the TMV-based vector containing synthetic COE gene, which was approximately 30-fold higher than that in tobacco plants infected with TMV-based vector containing a native COE gene. Therefore, this result indicates that the plant viral expression system with a synthetic gene optimized for plant expression is suitable to produce a large amount of antigen for the development of plant-based vaccine rapidly.  相似文献   

9.
10.
RNA-interference (RNAi) silences gene expression by'guiding mRNA degradation in asequence-specific fashion.Small interfering RNA (siRNA),an intermediate of the RNAi pathway,has beenshown to be very effective in inhibiting virus infection in mammalian cells and cultured plant cells.Here,wereport that Agrobacterium tumefaciens-mediated transient expression of short hairpin RNA (shRNA) couldinhibit tobacco mosaic virus (TMV) RNA accumulation by targeting the gene encoding the replication-asso-ciated 126 kDa protein in intact plant tissue.Our results indicate that transiently expressed shRNA efficientlyinterfered with TMV infection.The interference observed is sequence-specific,and time-and site-dependent.Transiently expressed shRNA corresponding to the TMV 126 kDa protein gene did not inhibit cucumbermosaic virus (CMV),an unrelated tobamovirus.In order to interfere with TMV accumulation in tobaccoleaves,it is essential for the shRNA constructs to be infiltrated into the same leaves as TMV inoculation.Ourresults support the view that RNAi opens the door for novel therapeutic procedures against virus diseases.We propose that a combination of the RNAi technique and Agrobacterium-mediated transient expressioncould be employed as a potent antiviral treatment in plants.  相似文献   

11.
12.
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.  相似文献   

13.
Expression of a chimeric gene encoding the coat protein (CP) of tobacco mosaic virus (TMV) in transgenic tobacco plants confers resistance to infection by TMV. We investigated the spread of TMV within the inoculated leaf and throughout the plant following inoculation. Plants that expressed the CP gene [CP(+)] and those that did not [CP(-)] accumulated equivalent amounts of virus in the inoculated leaves after inoculation with TMV-RNA, but the CP(+) plants showed a delay in the development of systemic symptoms and reduced virus accumulation in the upper leaves. Tissue printing experiments demonstrated that if TMV infection became systemic, spread of virus occurred in the CP(+) plants essentially as it occurred in the CP(-) plants although at a reduced rate. Through a series of grafting experiments, we showed that stem tissue with a leaf attached taken from CP(+) plants prevented the systemic spread of virus. Stem tissue without a leaf had no effect on TMV spread. All of these findings indicate that protection against systemic spread in CP(+) plants is caused by one or more mechanisms that, in correlation with the protection against initial infection upon inoculation, result in a phenotype of resistance to TMV.  相似文献   

14.
Cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata, is mediated by a specialized viral movement protein (MP). In vivo studies using transgenic tobacco plants showed that MP is phosphorylated at its C-terminus at amino acid residues Ser258, Thr261 and Ser265. When MP phosphorylation was mimicked by negatively charged amino acid substitutions, MP lost its ability to gate plasmodesmata. This effect on MP-plasmodesmata interactions was specific because other activities of MP, such as RNA binding and interaction with pectin methylesterases, were not affected. Furthermore, TMV encoding the MP mutant mimicking phosphorylation was unable to spread from cell to cell in inoculated tobacco plants. The regulatory effect of MP phosphorylation on plasmodesmal permeability was host dependent, occurring in tobacco but not in a more promiscuous Nicotiana benthamiana host. Thus, phosphorylation may represent a regulatory mechanism for controlling the TMV MP-plasmodesmata interactions in a host-dependent fashion.  相似文献   

15.
Trichosanthin (TCS) is an antiviral plant defense protein, classified as a type-I ribosome-inactivating protein, found in the root tuber and leaves of the medicinal plant Trichosanthes kirilowii. It is processed from a larger precursor protein, containing a 23 amino acid amino (N)-terminal sequence (pre sequence) and a 19 amino acid carboxy (C)-terminal extension (pro sequence). Various constructs of the TCS gene were expressed in transgenic tobacco plants to determine the effects of the amino- and carboxy-coding gene sequences on TCS expression and host toxicity in plants. The maximum TCS expression levels of 2.7% of total soluble protein (0.05% of total dry weight) were obtained in transgenic tobacco plants carrying the complete prepro-TCS gene sequence under the Cauliflower mosaic virus 35S RNA promoter. The N-terminal sequence matched the native TCS sequence indicating that the T. kirilowii signal sequence was properly processed in tobacco and the protein translation inhibitory activity of purified rTCS was similar to native TCS. One hundred-fold lower expression levels and phenotypic aberrations were evident in plants expressing the gene constructs without the C-terminal coding sequence. Transgenic tobacco plants expressing recombinant TCS exhibited delayed symptoms of systemic infection following exposure to Cucumber mosaic virus and Tobacco mosaic virus (TMV). Local lesion assays using extracts from the infected transgenic plants indicated reduced levels of TMV compared with nontransgenic controls.  相似文献   

16.
In plant systems, the green fluorescent protein (GFP) is increasingly used as a marker to study dynamics of the secretory apparatus using fluorescence microscopy. The purpose of this study was to immunogold localize the GFP, at the electron microscopic level, in a line of tobacco BY-2-cultured cells, expressing a GFP-tagged Golgi glycosyltransferase. To this end we have developed a simple, one-step chemical fixation method that allow good structural preservation and specific labeling with anti-GFP antibodies. Using this method, we have been able to show that an N-glycan GFP-tagged xylosyltransferase is specifically associated with Golgi stacks of BY-2 transformed cells and is preferentially located in medial cisternae. As an alternative to cryofixation methods, such as high-pressure freezing, which requires specialized and expensive equipment not available in most laboratories, this method offers researchers the opportunity to investigate GFP-tagged proteins of the endomembrane system in tobacco BY-2 cells.  相似文献   

17.
Systemic movement of a tobamovirus requires host cell pectin methylesterase   总被引:10,自引:0,他引:10  
Systemic movement of plant viruses through the host vasculature, one of the central events of the infection process, is essential for maximal viral accumulation and development of disease symptoms. The host plant proteins involved in this transport, however, remain unknown. Here, we examined whether or not pectin methylesterase (PME), one of the few cellular proteins known to be involved in local, cell-to-cell movement of tobacco mosaic virus (TMV), is also required for the systemic spread of viral infection through the plant vascular system. In a reverse genetics approach, PME levels were reduced in tobacco plants using antisense suppression. The resulting PME antisense plants displayed a significant degree of PME suppression in their vascular tissues but retained the wild-type pattern of phloem loading and unloading of a fluorescent solute. Systemic transport of TMV in these plants, however, was substantially delayed as compared to the wild-type tobacco, suggesting a role for PME in TMV systemic infection. Our analysis of virus distribution in the PME antisense plants suggested that TMV systemic movement may be a polar process in which the virions enter and exit the vascular system by two different mechanisms, and it is the viral exit out of the vascular system that involves PME.  相似文献   

18.
We report on the isolation and characterization of full-length cDNA sequences coding for N-acetylglucosaminyltransferase I (GnTI) from potato (Solanum tuberosum L.), tobacco (Nicotiana tabacum L.), and Arabidopsis. The deduced polypeptide sequences show highest homology among the solanaceous species (93% identity between potato and tobacco compared with about 75% with Arabidopsis) but share only weak homology with human GnTI (35% identity). In contrast to the corresponding enzymes from animals, all plant GnTI sequences identified are characterized by a much shorter hydrophobic membrane anchor and contain one putative N-glycosylation site that is conserved in potato and tobacco, but differs in Arabidopsis. Southern-blot analyses revealed that GntI behaves as a single-copy gene. Northern-blot analyses showed that GntI-mRNA expression is largely constitutive. Arabidopsis cgl mutants deficient in GnTI activity also possess GntI mRNA, indicating that they result from point mutations. GntI-expression constructs were tested for the ability to relieve the GnTI block in protoplasts of the Arabidopsis cgl mutant and used to obtain transgenic potato and tobacco plants that display a substantial reduction of complex glycan patterns. The latter observation indicates that production of heterologous glycoproteins with little or no antigenic glycans can be achieved in whole plants, and not in just Arabidopsis, using antisense technology.  相似文献   

19.
Membrane trafficking plays a fundamental role in eukaryotic cell biology. Of the numerous known or predicted protein components of the plant cell trafficking system, only a relatively small subset have been characterized with respect to their biological roles in plant growth, development, and response to stresses. In this study, we investigated the subcellular localization and function of an Arabidopsis (Arabidopsis thaliana) small GTPase belonging to the RabE family. RabE proteins are phylogenetically related to well-characterized regulators of polarized vesicle transport from the Golgi apparatus to the plasma membrane in animal and yeast cells. The RabE family of GTPases has also been proposed to be a putative host target of AvrPto, an effector protein produced by the plant pathogen Pseudomonas syringae, based on yeast two-hybrid analysis. We generated transgenic Arabidopsis plants that constitutively expressed one of the five RabE proteins (RabE1d) fused to green fluorescent protein (GFP). GFP-RabE1d and endogenous RabE proteins were found to be associated with the Golgi apparatus and the plasma membrane in Arabidopsis leaf cells. RabE down-regulation, due to cosuppression in transgenic plants, resulted in drastically altered leaf morphology and reduced plant size, providing experimental evidence for an important role of RabE GTPases in regulating plant growth. RabE down-regulation did not affect plant susceptibility to pathogenic P. syringae bacteria; conversely, expression of the constitutively active RabE1d-Q74L enhanced plant defenses, conferring resistance to P. syringae infection.  相似文献   

20.
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号