首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 605 毫秒
1.
Participation of brown adipose tissue [through the action of the uncoupling protein-1 (UCP1)] in adaptive adrenergic nonshivering thermogenesis is recognized, but the existence of a response to adrenergic stimulation in UCP1-ablated mice implies that a mechanism for an alternative adaptive adrenergic thermogenesis may exist. Here, we have used UCP1-ablated mice to examine the existence of an alternative adaptive adrenergic nonshivering thermogenesis, examined as the oxygen consumption response to systemically injected norepinephrine into anesthetized or conscious mice acclimated to different temperatures. We confirm that UCP1-dependent adrenergic nonshivering thermogenesis is adaptive, but we demonstrate that the adrenergic UCP1-independent thermogenesis is not recruitable by cold acclimation. Thus, at least in the mouse, no other proteins or enzymatic pathways exist that can participate in or with time take over the UCP1 mediation of adaptive adrenergic nonshivering thermogenesis, even in the total absence of UCP1. UCP1 is thus the only protein capable of mediating cold acclimation-recruited adaptive adrenergic nonshivering thermogenesis.  相似文献   

2.
Ricquier D 《Comptes rendus biologies》2006,329(8):578-86; discussion 653-5
Thermogenesis is an obligatory consequence of cellular metabolism and is identified as a unique property of homeotherms which have to maintain constant their body temperature in a cold environment. Physiologically, thermogenesis is made of basal metabolism, post-prandial thermogenesis, exercise-induced thermogenesis and adaptive thermogenesis induced by changes in the environmental temperature. Biochemically, thermogenesis comes from exergonic reactions from a loose coupling between endergonic and exergonic reactions. In cells, respiration and oxidations occur in mitochondria which ensure the coupling of oxidative energy to ATP synthesis. Identification of mitochondrial uncoupling proteins UCP allowed further understanding of the mechanism of coupling or uncoupling of respiration to ADP phosphorylation. Such data maybe of help in the understanding, or possible treatment, of certain types of obesity.  相似文献   

3.
Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.  相似文献   

4.
The maintenance of body weight at a stable level for an adult man requires the involvement of mechanisms which should adapt energy intake to energy expenditure (or vice versa). Energy balance is thus maintained near equilibrium. However, the nature of these mechanisms is poorly understood. The control of food intake has been studied often and will not be discussed in this presentation. This paper concerns the control of energy expenditure, particularly the control of nutrient-induced thermogenesis. The recent interest in this field has arisen following the demonstration of the role of nutrient-induced thermogenesis in rats and mice having free access to the "cafeteria diet". Under these conditions, these animals overeat, but the major part of the excess energy intake above maintenance, is dissipated as heat through the sympathetic activation of brown adipose tissue. By contrast, a thermogenic defect in brown adipose tissue is involved in the development of genetic or hypothalamic obesity in rats and mice. In man, diet-induced thermogenesis seems to play a smaller role in the control of energy balance than in small mammals. This is probably related to the partial atrophy of brown adipose tissue in adult man. Studies on thermogenesis induced by the intravenous infusion of glucose and insulin (euglycemic hyperinsulinemic clamp technique) in man have allowed us to identify two components: the first, the obligatory thermogenesis is due to the energetic cost of glucose storage (which mainly occurs as glycogen); the second has been called facultative thermogenesis, and is dependent upon stimulation of the sympathetic nervous system. Facultative thermogenesis can be suppressed by propranolol, a drug which blocks the beta-receptors of the sympathetic nervous system. The effector tissue which is responsible for the facultative thermogenesis in man is unknown. Overfeeding studies with carbohydrates in man have also shown the occurrence of facultative thermogenesis. The contribution of a thermogenesis defect to the development of obesity in predisposed individuals is shown by studies using the technique of the respiration chamber. About one third of obese subjects who have been studied in the chamber have shown a decreased postprandial thermogenic response. A thermogenic defect could explain a weight gain of about 10 kg. Other mechanisms which include eating behaviour and low physical activity are needed to explain weight gains greater than 10 kg.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in all organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF]. At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT] balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.  相似文献   

6.
Previous studies have shown that aminophylline, a phosphodiesterase inhibitor (thereby increasing intracellular cyclic AMP concentration) elicits supramaximal heat production and improves cold tolerance in rats acclimated to 22°C. To test whether aminophylline-stimulated supramaximal thermogenesis is independent of both the thermogenic capacity (i.e. aerobic fitness) and the mode of thermogenesis (shivering vs. non-shivering), rats (adult male Sprague-Dawley, approximately 400 g) of two different ages (4–11 month and 9–17 month, n=12 for each) were acclimated to 5, 15, and 25°C in succession and their thermogenic responses to aminophylline subsequently assessed. Aminophylline elicited supramaximal thermogenesis and improved cold tolerance regardless of age or acclimating temperatures. Further, the absolute net increase in heat production stimulated by aminophylline was also similar for all acclimating temperatures. After acclimating to 15°C, a single injection of aminophylline in the older rats elicited thermogenesis greater than that of the controls acclimated to 5°C; in the younger rats, aminophylline duplicated 46% of the increase in thermogenesis observed after acclimating to 5°C. These results indicated that the aminophylline-stimulated extra heat production is independent of both the thermogenic capacity and the mode of thermogenesis. It is possible that an enhanced substrate mobilization consequent to increased intracellular cyclic AMP concentration by aminophylline underlies the common mechanism via which supramaximal thermogenesis is elicited in temperature-acclimated rats.  相似文献   

7.
The presence of nonshivering thermogenesis in marsupials is controversially debated. Survival of small eutherian species in cold environments is crucially dependent on uncoupling protein 1 (UCP1)-mediated, adaptive nonshivering thermogenesis that is executed in brown adipose tissue. In a small dasyurid marsupial species, the fat-tailed dunnart (Sminthopsis crassicaudata), an orthologue of UCP1 has been recently identified which is upregulated during cold exposure resembling adaptive molecular adjustments of eutherian brown adipose tissue. Here, we tested for a thermogenic function of marsupial brown adipose tissue and UCP1 by evaluating the capacity of nonshivering thermogenesis in cold-acclimated dunnarts. In response to an optimal dosage of noradrenaline, cold-acclimated dunnarts (12°C) showed no additional recruitment of noradrenaline-induced maximal thermogenic capacity in comparison to warm-acclimated dunnarts (24°C). While no differences in body temperature were observed between the acclimation groups, basal metabolic rate was significantly elevated after cold acclimation. Therefore, we suggest that adaptive nonshivering thermogenesis does not occur in this marsupial species despite the cold recruitment of oxidative capacity and UCP1 in the interscapular fat deposit. In conclusion, the ancient UCP orthologue in marsupials does not contribute to the classical nonshivering thermogenesis, and may exhibit a different physiological role.  相似文献   

8.
We determined the thermogenesis curves of mitochondria isolated from fish liver tissue by using an LKB 2277 Bioactivity Monitor. After isolation from the fish liver, mitochondria still have activity and can live for a long time by using the stored nutrients. We calculated the recovery rate constants of mitochondria. We found that the thermogenesis curves of mitochondria are similar to those obtained from prokaryotic cells, but not similar to those obtained from eukaryotic cells. We determined the metabolic thermogenesis curves of mitochondria isolated from two kinds of carp liver tissue, scattered-scaled mirror carp and harvest carp. There are some important similarities and some important differences between these thermogenesis curves.  相似文献   

9.
Summary In Djungarian hamsters the cold-induced thermoregulatory heat production was preceeded and accompanied by an increase in the plasma level of free fatty acids. In warm-acclimated hamsters this increase was found more pronounced (0.85 to 1.48 mM) than in cold-acclimated hamsters (0.64 to 0.88 mM). Noradrenaline-induced thermogenesis at thermoneutrality provoked a similar increase in the free fatty acid level. Inhibition of nonshivering thermogenesis during cold exposure by propranolol abolished the increase in free fatty acids completely. The surgical removal of brown adipose tissue proportionately reduced the increase in free fatty acids. This indicates that the rise in plasma free fatty acids is functionally related to nonshivering thermogenesis and originates from brown adipose tissue.  相似文献   

10.
Catch-up growth during infancy and childhood is increasingly recognized as a major risk factor for later development of insulin-related complications and chronic diseases, namely abdominal obesity, type 2 diabetes and cardiovascular disease. As catch-up growth per se is characterized by insulin resistance, hyperinsulinaemia and an accelerated rate of fat storage (i.e., catch-up fat) even in the absence of hyperphagia, the possibility arises that suppressed thermogenesis in certain organs/tissues - for the purpose of enhancing the efficiency of catch-up fat - also plays a role in the pathophysiological consequences of catch-up growth. Here, the evidence for the existence of an adipose-specific control of thermogenesis, the suppression of which contributes to catch-up fat, is reviewed. Recent findings suggest that such suppression of thermogenesis is accompanied by hyperinsulinaemia, insulin resistance in skeletal muscle and insulin hyperresponsiveness in adipose tissue, all of which precede the appearance of excess body fat, central fat distribution and elevations in intramyocellular triglyceride or circulating lipid concentrations. These findings underscore a role for suppressed thermogenesis per se as an early event in the pathophysiology of catch-up growth. It is proposed that, in its evolutionary adaptive role to spare glucose for the rapid rebuilding of an adequate fat reserve (for optimal survival capacity during intermittent famine), suppressed thermogenesis in skeletal muscle constitutes a thrifty phenotype that confers to the phase of catch-up growth its high sensitivity to the development of insulin resistance and hyperinsulinaemia. In the context of the complex interactions between earlier reprogramming and a modern lifestyle characterized by nutritional abundance and low physical activity, this thrifty 'catch-up fat phenotype' is a central event that predisposes individuals with catch-up growth to abdominal obesity, type 2 diabetes and cardiovascular disease.  相似文献   

11.
The role of insulin in norepinephrine turnover (NE) and thermogenesis in brown adipose tissue (BAT) after acute cold-exposure was studied using streptozocin (STZ)-induced diabetic rats. NE turnover was estimated by the NE synthesis inhibition technique with alpha-methyl-p-tyrosine. BAT thermogenesis was estimated by measuring mitochondrial guanosine-5'-diphosphate (GDP), cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at an ambient temperature of 22 degrees C and during a six-hour cold-exposure at 4 degrees C. In insulin-deficient diabetic rats, the NE turnover, mitochondrial GDP binding, cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at 22 degrees C were significantly reduced, compared with those of control rats. Treatment of STZ-induced diabetic rats with insulin prevented a decrease in NE turnover and BAT thermogenesis. Acute cold-exposure increased the NE turnover of BAT in insulin-deficient diabetic rats. The BAT thermogenic response to acute cold-exposure, however, did not occur in insulin-deficient diabetic rats. These results suggest that insulin is not essential in potentiating NE turnover in BAT after acute cold-exposure, but is required for cold-induced thermogenesis.  相似文献   

12.
Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels.  相似文献   

13.
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.  相似文献   

14.
能量代谢的适应性调节是小型哺乳动物应对环境季节性变化的主要策略之一。为探讨不同温度下动物在代谢产热能量支出与脂肪累积之间的权衡策略,以成年雄性黑线仓鼠为研究对象开展了3 个实验:实验1 将动物驯化于高脂和低脂食物;实验2 将动物暴露于低温(5℃)和暖温(30℃);实验3 将饲喂高脂食物的动物暴露于低温。以食物平衡法测定摄食量、摄入能和消化率,以开放式氧气分析仪测定代谢产热,以索氏抽提法测定脂肪含量。结果发现,取食高脂食物的黑线仓鼠摄食量显著减少,但脂肪累积显著增加;暖温下摄食量显著减少,但体脂含量显著增加,低温下摄食量显著升高,但体脂含量显著减少;饲喂高脂食物的黑线仓鼠在低温下摄入能显著增加,非颤抖性产热增强,但体脂含量显著降低。结果表明高脂食物对黑线仓鼠体脂累积的影响与环境温度有关,低温诱导脂肪动员,暖温促进脂肪贮存;低温下黑线仓鼠增加能量摄入不能完全补偿用于产热的能量支出,导致脂肪动员增加;暖温下代谢产热降低是脂肪累积的主要因素;与能量摄入相比代谢产热的能量支出在体脂累积的适应性变化中发挥更重要的作用。  相似文献   

15.
Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold.   总被引:5,自引:0,他引:5  
Adaptive nonshivering thermogenesis may have profound effects on energy balance and is therefore therefore is a potential mechanism for counteracting the development of obesity. The molecular basis for adaptive nonshivering thermogenesis has remained a challenge that sparked acute interest with the identification of proteins (UCP2, UCP3, etc.) with high-sequence similarity to the original uncoupling protein-1 (UCP1), which is localized only in brown adipose tissue. Using UCP1-ablated mice, we examined whether any adaptive nonshivering thermogenesis could be recruited by acclimation to cold. Remarkably, by successive acclimation, the UCP1-ablated mice could be made to subsist for several weeks at 4C during which they had to constantly produce heat at four times their resting levels. Despite these extreme requirements for adaptive nonshivering thermogenesis, however, no substitution of shivering by any adaptive nonshivering thermogenic process occurred. Thus, although the existence of, for example, muscular mechanisms for adaptive nonshivering thermogenesis has recurrently been implied, we did not find any indication of such thermogenesis. Not even during prolonged and enhanced demand for extra heat production was any endogenous hormone or neurotransmitter able to recruit any UCP1-independent adaptive nonshivering thermogenic process in muscle or in any other organ, and no proteins other than UCP1-not even UCP2 or UCP3-therefore have the ability to mediate adaptive nonshivering thermogenesis in the cold.  相似文献   

16.
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non‐shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT‐centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle‐based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT‐mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.  相似文献   

17.
Channeling carbohydrates and fatty acids to thermogenic tissues, including brown and beige adipocytes, have garnered interest as an approach for the management of obesity-related metabolic disorders. Mitochondrial fatty acid oxidation (β-oxidation) is crucial for the maintenance of thermogenesis. Upon cellular fatty acid uptake or following lipolysis from triglycerides (TG), fatty acids are esterified to coenzyme A (CoA) to form active acyl-CoA molecules. This enzymatic reaction is essential for their utilization in β-oxidation and thermogenesis. The activation and deactivation of fatty acids are regulated by two sets of enzymes called acyl-CoA synthetases (ACS) and acyl-CoA thioesterases (ACOT), respectively. The expression levels of ACS and ACOT family members in thermogenic tissues will determine the substrate availability for β-oxidation, and consequently the thermogenic capacity. Although the role of the majority of ACS and ACOT family members in thermogenesis remains unclear, recent proceedings link the enzymatic activities of ACS and ACOT family members to metabolic disorders and thermogenesis. Elucidating the contributions of specific ACS and ACOT family members to trafficking of fatty acids towards thermogenesis may reveal novel targets for modulating thermogenic capacity and treating metabolic disorders.  相似文献   

18.
Regulation of thermogenesis by the central melanocortin system   总被引:1,自引:0,他引:1  
Fan W  Voss-Andreae A  Cao WH  Morrison SF 《Peptides》2005,26(10):1800-1813
Adaptive thermogenesis represents one of the important homeostatic mechanisms by which the body maintains appropriate levels of stored energy and its core temperature. Dysregulation of adaptive thermogenesis promotes obesity. The central melanocortin system, in particular the melanocortin 4 receptor (MC4R) signaling pathway, influences the regulation of every aspect of energy balance, including thermogenesis, and plays a critical role in energy homeostasis in both rodent and man. This review will outline our current understanding of adaptive thermogenesis, focusing on the role of the central melanocortin pathway in the regulation of thermogenesis.  相似文献   

19.
3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.  相似文献   

20.
An important outcome of plant thermogenesis is increased emissions of volatiles that mediate pollinator behaviour. We investigated whether the large increase in emissions, mainly the monoterpene ß‐myrcene (>90%), during daily thermogenic events of Macrozamia macleayi and lucida cycad cones are due solely to the influence of high cone temperatures or are, instead, a result of increased respiratory rates during thermogenesis. We concurrently measured temperature, oxygen consumption and ß‐myrcene emission profiles during thermogenesis of pollen cones under typical environmental temperatures and during experimental manipulations of cone temperatures and aerobic conditions, all in the dark. The exponential rise in ß‐myrcene emissions never occurred without a prior, large increase in respiration, whereas an increase in cone temperature alone did not increase emissions. When respiration during thermogenesis was interrupted by anoxic conditions, ß‐myrcene emissions decreased. The increased emission rates are not a result of increased cone temperature per se (through increased enzyme activity or volatilization of stored volatiles) but are dependent on biosynthetic pathways associated with increased respiration during thermogenesis that provide the carbon, energy (ATP) and reducing compounds (NADPH) required for ß‐myrcene production through the methylerythritol phosphate (MEP) pathway. These findings establish the significant contribution of respiration to volatile production during thermogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号