首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.Key words: cationic lipids, cationic liposomes, gene transfection  相似文献   

2.
In this paper, two novel carbamate-linked quaternary ammonium lipids (MU18: a lipid with a mono-ammonium head; GU18: a lipid with a Gemini-ammonium head) containing unsaturated hydrophobic chains were designed and synthesized. The chemical structures of the synthetic lipids were characterized by infrared spectrum, ESI-MS, 1H NMR, 13C NMR, and HPLC. For investigating the effect of unsaturation on gene delivery, the previous reported saturated cationic liposomes (MS18 and GS18) were used as comparison. Cationic liposomes were prepared by using these cationic lipids and neutral lipid DOPE at the molar ratio of 1:1. Particle sizes and zeta potentials of the cationic liposomes were studied to show that they were suitable for gene transfection. The binding abilities of the cationic liposomes were investigated by gel electrophoresis at various N/P ratios from 0.5/1 to 8/1. The results indicated that the binding ability of GU18 was much better than MU18 and the saturated cationic liposomes (MS18 and GS18). DNA transfection of these liposomes comparable to commercially available reagent (DOTAP) was achieved in vitro against Hela, HepG-2 and NCI-H460 cell lines. GU18 showed higher transfection at the N/P ratio of 3/1 than other cationic liposomes and the positive control, DOTAP. All of the liposomes presented a relatively low cytotoxicity, which was measured by MTT. Therefore, the synthetic lipids bearing unsaturated hydrophobic chains and Gemini-head could be promising candidates for gene delivery.  相似文献   

3.
The solid phase synthesis of a library of aminoglycerol–diamine conjugate-based transfection agents having urea linkage between diverse length of diamines and various lengths of hydrophobic tails is described. These compounds were characterized and structure–activity relationships were determined for DNA binding and transfection ability when formulated as cationic liposomes. Cationic lipids with short spacer length and short hydrophobic tails bound to DNA and delivered DNA into HEK293 cells more efficient than those with longer ones. Transfection efficiency of some of the cationic liposomes was superior to that of the commercial transfection agents, EffecteneTM, DOTAP and DC-Chol. The lipids 6Ab and 6Bb did not require the helper lipid DOPE to produce high-efficiency transfection of human cells while displaying minimal cytotoxicity. This suggests that these newly described aminoglycerol-based lipids should be very promising in liposome-mediated gene delivery and illustrate the potential of solid phase synthesis method for non-viral vector discovery.  相似文献   

4.
Four novel cholesterol-based gemini cationic lipids differing in the length of oxyethylene-type spacers [-CH2-(CH2-O-CH2)n-CH2-] between each ammonium headgroup have been synthesized. These formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of cationic lipid and DOPE. These were used as nonviral gene delivery agents. All the cholesterol-based gemini lipids induced better transfection activity than their monomeric counterpart. Inclusion of DOPE in co-liposomal formulation of the cationic gemini lipid potentiates their gene transfer activity significantly. A major characteristic feature of these oxyethylene spacer based cholesterol gemini lipids was that serum does not inhibit the transfection activity of these gemini lipids, whereas the transfection activity of their monomeric counterpart decreased drastically in the presence of serum. One of the cholesterol-based gemini lipids 2a possessing a -CH2-CH2-O-CH2-CH2- spacer showed the highest transfection activity.  相似文献   

5.
New cationic lipids having an o-nitrobenzyl moiety as a photocleavable spacer between its hydrophilic and hydrophobic region were synthesized. To improve the efficiency of transfection with lipoplexes, after transfecting the cationic lipid aggregate/DNA complex, photoirradiation was performed. Photochemical decomposition of lipids would not only make the vector's membrane unstable to facilitate the fusion with endocytic vesicles, but also promote dissociation of cationic lipid-DNA complex, thus aiding the escape of DNA from the endocytic vesicles. Using a luciferase gene as a model, we show that UV irradiation of photoresponsive lipoplex-treated COS-1 cells induces a substantial increase in the efficiency of transfection. Herein, we show a novel photoresponsive gene delivery system.  相似文献   

6.
A structure-activity relationship has been explored on the gene transfection efficiencies of cardiolipin mimicking gemini lipid analogues upon variation of length and hydrophilicity of the spacer between the cationic ammonium headgroups and lipid hydrocarbon chain lengths. All the gemini lipids were found to be highly superior in gene transfer abilities as compared to their monomeric lipid and a related commercially available formulation. Pseudoglyceryl gemini lipids bearing an oxyethylene (-CH2-(CH2-O-CH2)m-CH2-) spacer were found to be superior gene transfecting agents as compared to those bearing polymethylene (-CH2)m-) spacers. The major characteristic feature of the present set of gemini lipids is their serum compatibility, which is most often the major hurdle in liposome-mediated gene delivery.  相似文献   

7.
Twenty-four asymmetric divalent head group cholesterol-based cationic lipids were designed and synthesized by parallel solid phase chemistry. These asymmetric head groups composed of amino functionality together with trimethylamino, di(2-hydroxyethyl)amino or guanidinyl groups. Spacers between cationic heads and linker were both equal and unequal in length. These lipids were subjected to evaluation for DNA binding affinities by gel retardation assay and were screened for their transfection efficiency on HEK293 cells. Cationic lipids with equal chain length exhibited high transfection efficiency when polar part contained asymmetric polar heads. In contrast, lipids with unequal chain length exhibited high transfection efficiency when polar part contained symmetric heads. According to the optimal formulation, seven lipids exhibited higher transfection efficiency than the commercially available transfection agents, Effectene?, DOTAP and DC-Chol, to deliver DNA into PC3 human prostate adenocarcinoma cells. 3β-[N-(N′-Guanidinyl)-2′-aminoethyl)-N-(2-aminoethyl)carbamoyl] cholesterol (5) bearing amino and guanidinyl polar heads exhibited highest transfection efficiency with minimal toxicity. The morphology of active liposomes was observed by transmission electron microscopy (TEM) and size of liposomes were around 200–700 nm.  相似文献   

8.
We synthesized cationic lipids bearing lysine, histidine, or arginine as a cationic headgroup for use in gene transfer studies. The cationic assemblies formed from lysine- or arginine-type lipids gave unilamellar vesicles (approximately 100 nm diameter), whereas the morphology of the histidine-type lipids was tube-like. The competences of the cationic assemblies were sufficient to form lipoplexes, and the resulting lipoplexes were evaluated in terms of gene expression efficiencies with COS-7 cells. The lysine- or arginine-type lipids exhibited higher gene expression efficiencies than that of Lipofectamine2000, a conventional transgenic reagent, indicating that stable lipoplexes could be prepared between spherical cationic assemblies and plasmid DNA. The gene expression efficiency in relation to the cationic headgroup of the lipids was as follows: lysine > or = arginine > histidine. In addition, gene expression efficiency was enhanced by decreasing the length of the alkyl chain of the hydrophobic moiety. Unlike Lipofectamine2000, no reduction in transfection efficiency in the presence of fetal bovine serum was observed for the lipoplexes formed using synthetic cationic lipids. Moreover, the synthetic cationic lipids revealed remarkably low cytotoxicity compared with Lipofectamine2000. In conclusion, cationic assemblies formed from 1,5-ditetradecyl-N-lysyl-L-glutamate or 1,5-ditetradecyl-N-arginyl-L-glutamate can be used as an effective plasmid DNA delivery system.  相似文献   

9.
Six novel gemini cationic lipids based on aromatic backbone, bearing n-C14H 29 or n-C16H33 hydrocarbon chains, differing in the length of oxyethylene type spacers -CH2-(CH2-O-CH2)m-CH2- between each ammonium headgroups have been synthesized, where m varies from 1 to 3. Each of these lipids formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of each cationic lipid and DOPE. These were used as nonviral gene delivery agents. Transfection studies showed that among lipids bearing n-C14H29 chains, the transfection efficacies decreased with the increase in the length of the spacer, whereas in case of lipids bearing n-C 16H33 chains, the transfection efficacies increased with the increase in the length of the spacer. Lipid bearing n-C16H33 hydrocarbon chains with a [-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2)-] spacer was found to be a potent gene transfer agent and its transfection was highly serum compatible even in the presence of 50% serum conditions.  相似文献   

10.
Lysine (K) type cationic lipid with a propyl spacer and ditetradecyl hydrophobic moieties composing liposomes, K3C14, previously studied for gene delivery, were reported to activate the NLRP3 inflammasomes in human macrophages via the conventional phagolysosomal pathway. In this study, K3C16, a propyl spacer bearing lysine type lipids with dihexadecyl moieties (an extension of two hydrocarbon tail length) were compared with K3C14 as liposomes. Such a small change in tail length did not alter the physical properties such as size distribution, zeta potential and polydispersity index (PDI). The NLRP3 activation potency of K3C16 was shown to be 1.5-fold higher. Yet, the toxicity was minimal, whereas K3C14 has shown to cause significant cell death after 24 h incubation. Even in the presence of endocytosis inhibitors, cytochalasin D or dynasore, K3C16 continued to activate the NLRP3 inflammasomes and to induce IL-1β release. To our surprise, K3C16 liposomes were confirmed to fuse with the plasma membrane of human macrophages and CHO-K1 cells. It is demonstrated that the change in hydrophobic tail length by two hydrocarbons drastically changed a cellular entry route and potency in activating the NLRP3 inflammasomes.  相似文献   

11.
Five cholesterol-based cationic lipids were newly synthesized based on cholest-5-en-3β-oxyethane-N,N,N-trimethylammonium bromide (Chol-ETA) structure where the cholesterol backbone is linked to cationic head via various lengths of ether-linked carbon spacer. The transfection efficiency of these compounds was increased in order of three (Chol-PRO) < four (Chol-BTA) < two (Chol-ETA) methylene unit in their spacer, and was decreased by an addition of isomethyl group to Chol-PRO spacer. In case of the presence of multiple bonds in the spacer, it required the more cationic lipids in liposome formulation than single bond in the spacer to present similar transfection efficiency.  相似文献   

12.
Entrapment of plasmid DNA (pDNA) in an aqueous compartment separated from the bulk external aqueous medium by a phospholipid bilayer resembles a structure similar to a primitive living cell, and interestingly, this phenomenon occurs completely self-assembled. Being inspired by such a structure as well as using the dehydration–rehydration technique, we were able to encapsulate pDNA without using multivalent cations and with high efficiency (98 %) into noncationic lipid bilayer vesicles. These liposomes which were composed of dimyristoyl-sn-glycero-3-phosphocholine unlike cationic liposomes, were nontoxic. The obtained liposome structure was able protect DNA against nuclease and was completely stable, in a way that even after 6 months, it still kept the pDNA in its structure, and there was a small change in its size (100–150 nm) determined by dynamic light scattering. The purpose of this research is to polarize the researchers’ interest toward utilization of neutral liposomes originating from the cell membrane as the most efficient carrier for gene delivery. We indicated that in using such carriers, which are the most similar synthetic structures to viruses, their inability in electrostatic interaction with DNA would not be an obstacle for entrapping nucleic acids.  相似文献   

13.
Quaternary ammonium lipids 1b-d, with diether linkages between hydrocarbon chains and butane or hexane backbone, were synthesized for cationic liposome-mediated gene delivery. The synthetic strategy of using C-4 or C-6 synthon permits the achievement of the variation of the hydrophobic domain as well as changes of space between the quaternary ammonium head and the hydrophobic domain in the diether-linked cationic lipids.  相似文献   

14.
A series of novel 1,4,7,10-tetraazacyclododecanes (cyclen)-based cationic lipids bearing histidine imidazole group 10a10e were synthesized. These amphiphilic molecules have different hydrophobic tails (long chain, cholesterol or α-tocopherol) and various type of linking groups (ether, carbamate or ester). These molecules were used as non-viral gene delivery vectors, and their structure–activity relationships were investigated. As expected, the imidazole group could largely improve the buffering capabilities comparing to cyclen. The liposomes formed from 10 and dioleoylphosphatidyl ethanolamine (DOPE) could bind and condense plasmid DNA into nanoparticles with proper size and zeta-potentials. Comparing with Lipofectamine 2000, the formed lipoplexes gave lower transfected cells proportion, but higher fluorescence intensity, indicating their good intracellular delivering ability. Furthermore, results indicate that transfection efficiency of the cationic lipids is influenced by not only the hydrophobic tails but also the linking group. The cyclen-based cationic lipid with α-tocopherol hydrophobic tail and an ester linkage could give the highest transfection efficiency in the presence of serum.  相似文献   

15.
In the present study, nonionic surfactant vesicles (niosomes) formulated with Span 20, cholesterol, and novel synthesized spermine-based cationic lipids with four hydrocarbon tails in a molar ratio of 2.5:2.5:1 were investigated as a gene carrier. The effects of the structure of the cationic lipids, such as differences in the acyl chain length (C14, C16, and C18) of the hydrophobic tails, as well as the weight ratio of niosomes to DNA on transfection efficiency and cell viability were evaluated in a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The niosomes were characterized both in terms of morphology and of size and charge measurement. The formation of complexes between niosomes and DNA was verified with a gel retardation assay. The transfection efficiency of these cationic niosomes was in the following order: spermine-C18 > spermine-C16 > spermine-C14. The highest transfection efficiency was obtained for transfection with spermine-C18 niosomes at a weight ratio of 10. Additionally, no serum effect on transfection efficiency was observed. The results from a cytotoxicity and hemolytic study showed that the cationic niosomes were safe in vitro. In addition, the cationic niosomes showed good physical stability for at least 1 month at 4°C. Therefore, the cationic niosomes offer an excellent prospect as an alternative gene carrier.  相似文献   

16.
Realization of the potential of nucleic acids as drugs is intricately linked to their in vivo delivery. Cationic lipids demonstrated tremendous potential as safe, efficient and scalable in vitro carriers of nucleic acids. For in vivo delivery of nucleic acids, the extant two component liposomal preparations consisting of cationic lipids and nucleic acids have been largely found to be insufficient. Being a soft matter, liposomes readily respond to many physiological variables leading to complex component and morphological changes, thus confounding the efforts in a priori identification of a “competent” formulation. In the recent past many chemical moieties that provide advantage in facing the challenges of barriers in vivo, were incorporated into cationic lipids to improve the transfection efficiency. The cationic lipids, essential for DNA condensation and protection, definitely require additional components to be efficient in vivo. In addition, formulations of cationic lipid carriers with non-lipidic components, mainly peptides, have demonstrated success in in vivo transfection. The present review describes some recent successes of in vivo nucleic acid delivery by cationic lipids.  相似文献   

17.

Background

Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media.

Methodology/Principal Findings

To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features.

Conclusions/Significance

-OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.  相似文献   

18.
Gene therapy provides powerful new approaches to curing a large variety of diseases, which are being explored in ongoing worldwide clinical trials. To overcome the limitations of viral gene delivery systems, synthetic nonviral vectors such as cationic liposomes (CLs) are desirable. However, improvements of their efficiency at reduced toxicity and a better understanding of their mechanism of action are required. We present the efficient synthesis of a series of degradable multivalent cationic lipids (CMVLn, n=2 to 5) containing a disulfide bond spacer between headgroup and lipophilic tails. This spacer is designed to be cleaved in the reducing milieu of the cytoplasm and thus decrease lipid toxicity. Small angle X-ray scattering demonstrates that the initially formed lamellar phase of CMVLn-DNA complexes completely disappears when reducing agents such as DTT or the biologically relevant reducing peptide glutathione are added to mimic the intracellular milieu. The CMVLs (n=3 to 5) exhibit reduced cytotoxicity and transfect mammalian cells with efficiencies comparable to those of highly efficient non-degradable analogs and benchmark commercial reagents such as Lipofectamine 2000. Thus, our results demonstrate that degradable disulfide spacers may be used to reduce the cytotoxicity of synthetic nonviral gene delivery carriers without compromising their transfection efficiency.  相似文献   

19.
A new panel of steroidal cationic lipids has been synthesized for gene delivery. Using commercially available vitamin D2 (calciferol) or vitamin D3 (cholecalciferol) as hydrophobic motifs and a variety of cationic head groups as binding sites for negatively charged phosphate groups in DNA, we demonstrated that the transfection activity of the synthetic vitamin D-based cationic lipids 1d, 2d formulated with dioleoylphosphatidylethanolamine (DOPE) as a co-lipid is comparable to that of 3-(-[N-N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol). These synthetic lipids are effective in transfecting a variety of cell lines. These results suggest that vitamin D-based cationic lipids are useful transfection reagents for in vitro gene transfer studies.  相似文献   

20.
Three novel polycationic gemini amphiphiles with different spacers were developed and evaluated in terms of their physiochemical properties and transfection efficiencies. Cationic liposomes formed by these amphiphiles and the helper lipid DOPE were able to successfully condense DNA, as shown by gel mobility shift and ethidium bromide intercalation assays. Transfection activity of the liposomes was superior to Lipofectamine® 2000 and was dependent on spacer structure, hydrophobicity, and nucleic acid type (pDNA or siRNA). We demonstrated that the cationic liposomes 2X6/DOPE and 2X7/DOPE are potential non-toxic vehicles for gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号