首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This note describes a simple tray in which large numbers of radiolabeled nucleic acid samples mounted on paper or glass-fiber disks can be subjected to various treatments prior to counting by liquid scintillation spectrometry. The tray is useful for analysis of samples from ultracentrifugal fractionation of nucleic acids, for direct sampling of RNA or DNA polymerase assays in vitro, and for analysis of nucleic acid labeling in bacterial cultures.  相似文献   

3.
Two methods for preparing embryos for autoradiographic study of newly synthesized nucleic acids are described and compared. The first method consists of rapidly fixing radiolabeled embryos with acetic acid:methanol, spreading them on glass slides and exposing them for 8 days with a photographic emulsion. The second method consists of fixing, embedding in resin, and sectioning the embryos before their exposure with the emulsion for 3 weeks. Both techniques have many applications in studies of early embryonic activity, but the spread technique is very sensitive, simpler, and faster.  相似文献   

4.
Magnetic particles for the separation and purification of nucleic acids   总被引:1,自引:0,他引:1  
Nucleic acid separation is an increasingly important tool for molecular biology. Before modern technologies could be used, nucleic acid separation had been a time- and work-consuming process based on several extraction and centrifugation steps, often limited by small yields and low purities of the separation products, and not suited for automation and up-scaling. During the last few years, specifically functionalised magnetic particles were developed. Together with an appropriate buffer system, they allow for the quick and efficient purification directly after their extraction from crude cell extracts. Centrifugation steps were avoided. In addition, the new approach provided for an easy automation of the entire process and the isolation of nucleic acids from larger sample volumes. This review describes traditional methods and methods based on magnetic particles for nucleic acid purification. The synthesis of a variety of magnetic particles is presented in more detail. Various suppliers of magnetic particles for nucleic acid separation as well as suppliers offering particle-based kits for a variety of different sample materials are listed. Furthermore, commercially available manual magnetic separators and automated systems for magnetic particle handling and liquid handling are mentioned.  相似文献   

5.
Synthetic nucleic acid analysis often employs pellicular anion-exchange (AE) chromatography because it supports very high efficiency separations while offering means to control secondary structure, retention and resolution by readily modifiable chromatographic conditions. However, these pellicular anion-exchange (pAE) phases do not offer capacity sufficient for lab-scale oligonucleotide (ON) purification. In contrast, monolithic phases produce fast separations at capacities exceeding their pellicular counterparts, but do not exhibit capacities typical of fully porous, bead-based, anion-exchangers. In order to further increase monolith capacity and obtain the selectivity and mass transfer characteristics of pellicular phases, a surface-functionalized monolith was coated with pAE nanobeads (latexes) usually employed on the pellicular DNAPac phase. The nanobead-coated monolith exhibited chromatographic behaviors typical of polymer AE phases. Based on this observation the monolithic substrate surface porosity and latex diameters were co-optimized to produce a hybrid monolith harboring capacity similar to that of fully porous bead-based phases and peak shape approaching that of the pAE phases. We tested the hybrid monolith on a variety of previously developed pAE capabilities including control of ON selectivity, resolution of derivatized ONs, the ability to resolve RNA ONs harboring aberrant linkages at different positions in a single sequence and separation of phosphorothioate diastereoisomers. We compared the yield and purity of an 8 mg ON sample purified on both the new hybrid monolith and a benchmark AE column based on fully porous monodisperse beads. This comparison included an assessment of the relative selectivities of both columns. Finally, we demonstrated the ability to couple AE ON separations with ESI-MS using an automated desalting protocol. This protocol is also useful for preparing ONs for other assays, such as enzyme treatments, that may be sensitive to high salt levels.  相似文献   

6.
Electrokinetic techniques are a staple of microscale applications because of their unique ability to perform a variety of fluidic and electrophoretic processes in simple, compact systems with no moving parts. Isotachophoresis (ITP) is a simple and very robust electrokinetic technique that can achieve million-fold preconcentration and efficient separation and extraction based on ionic mobility. For example, we have demonstrated the application of ITP to separation and sensitive detection of unlabeled ionic molecules (e.g. toxins, DNA, rRNA, miRNA) with little or no sample preparation and to extraction and purification of nucleic acids from complex matrices including cell culture, urine, and blood. ITP achieves focusing and separation using an applied electric field and two buffers within a fluidic channel system. For anionic analytes, the leading electrolyte (LE) buffer is chosen such that its anions have higher effective electrophoretic mobility than the anions of the trailing electrolyte (TE) buffer (Effective mobility describes the observable drift velocity of an ion and takes into account the ionization state of the ion, as described in detail by Persat et al.). After establishing an interface between the TE and LE, an electric field is applied such that LE ions move away from the region occupied by TE ions. Sample ions of intermediate effective mobility race ahead of TE ions but cannot overtake LE ions, and so they focus at the LE-TE interface (hereafter called the "ITP interface"). Further, the TE and LE form regions of respectively low and high conductivity, which establish a steep electric field gradient at the ITP interface. This field gradient preconcentrates sample species as they focus. Proper choice of TE and LE results in focusing and purification of target species from other non-focused species and, eventually, separation and segregation of sample species. We here review the physical principles underlying ITP and discuss two standard modes of operation: "peak" and "plateau" modes. In peak mode, relatively dilute sample ions focus together within overlapping narrow peaks at the ITP interface. In plateau mode, more abundant sample ions reach a steady-state concentration and segregate into adjoining plateau-like zones ordered by their effective mobility. Peak and plateau modes arise out of the same underlying physics, but represent distinct regimes differentiated by the initial analyte concentration and/or the amount of time allotted for sample accumulation. We first describe in detail a model peak mode experiment and then demonstrate a peak mode assay for the extraction of nucleic acids from E. coli cell culture. We conclude by presenting a plateau mode assay, where we use a non-focusing tracer (NFT) species to visualize the separation and perform quantitation of amino acids.  相似文献   

7.
Aminopropyl nucleic acids (APNAs) are constitutionally simple nucleic acid alternatives with one stereogenic center per nucleotide, and with the potential to hybridize with RNA and to exert catalytic functions. We have developed a protecting group strategy to synthesize APNAs, although in a not very efficient way. Isolation and purification of APNAs proved to be difficult. Their structures might be more suited to function as potential catalytic polymers than as information systems that may evolve into RNA.  相似文献   

8.
Sizing of DNA fragments is a routine analysis traditionally performed on agarose or polyacrylamide gels. Electrophoretic analysis is labor-intensive with only limited potential for automation. Recovery of DNA fragments from gels is cumbersome. We present data on automated, size-based separation of DNA fragments by ion-pair reversed-phase high performance liquid chromatography (IP RP HPLC) - DNA chromatography - on the WAVE DNA Fragment Analysis System with the DNASep cartridge. This system is suitable for accurate and rapid sizing of double-stranded (ds) DNA fragments from 50 to ca. 2000 base pairs (bp). Fluorescently labeled DNA fragments are compatible with the technology. Length-dependent separation of dsDNA fragments is sequence independent and retention times are highly reproducible. The resolving capabilities of DNA chromatography are illustrated by the analysis of multiple DNA size markers. Resolved dsDNA fragments are easily collected and are suitable for downstream applications such as sequencing and cloning. DNA chromatography under denaturing conditions with fluorescently labeled DNA fragments offers a means for the separation and purification of individual strands of dsDNA. Analysis of DNA fragments on the WAVE System is highly automated and requires minimal manual intervention. DNA chromatography offers a reliable and automated alternative to gel electrophoresis for the analysis of DNA fragments.  相似文献   

9.
10.
11.
Peptide nucleic acids (PNAs) are nonionic DNA mimics. Their novel chemical properties may facilitate the development of selective and potent antisense and antigene strategies for regulating intracellular processes. Described herein are procedures for the synthesis, purification, handling, and characterization of PNAs. A simple protocol for the lipid-mediated introduction of PNAs into in vitro cultures of mammalian cells is provided.  相似文献   

12.
13.
We have employed biotin-labeled RNA to serve two functions. In one, the biotin tethers the RNA to streptavidin-agarose beads, creating an affinity resin for protein purification. In the other, the biotin functions as a label for use in a modified chemiluminescent electromobility shift assay (EMSA), a technique used to detect the formation of protein-RNA complexes. The EMSA that we describe avoids the use not only of radioactivity but also of neurotoxic acrylamide by using agarose as the gel matrix in which the free nucleic acid is separated from protein-nucleic acid complexes. After separation of free from complexed RNA in agarose, the RNA is electroblotted to positively charged nylon. The biotin-labeled RNA is readily bound by a streptavidin-alkaline phosphatase conjugate, allowing for very sensitive chemiluminescent detection ( approximately 0.1-1.0 fmol limit). Using our system, we were able to purify both known iron-responsive proteins (IRPs) from rat liver and assess their binding affinity to RNA containing the iron-responsive element (IRE) using the same batch of biotinylated RNA. We show data indicating that agarose is especially useful for cases when large complexes are formed, although smaller complexes are even better resolved.  相似文献   

14.
A new approach to increase the selectivity of interaction between oligonucleotide probes and target nucleic acids is described. In place of a single, relatively long oligonucleotide probe, two or three short oligomers terminated by thiophosphoryl and bromoacetamido groups are employed. Fast and efficient autoligation takes place when the oligomers hybridize in a contiguous mode to the same complementary strand such that a thiophosphoryl group on one strand and a bromoacetamido group on another are brought into proximity. A single nucleotide mismatch for the short probes leads to marked reduction in the rate of autoligation. The binding affinity of the product is close to that for a natural probe of the same length. This approach could have potential in oligonucleotide-based diagnostics, chemical amplification systems, and therapeutic applications.  相似文献   

15.
Mitochondrial nucleic acids   总被引:3,自引:0,他引:3  
P Borst  L A Grivell 《Biochimie》1973,55(6):801-804
  相似文献   

16.
We have developed general methods for joining together, via cleavable disulfide bonds, either two unprotected polynucleotides or a polynucleotide and a peptide or protein. To join two oligonucleotides, each is first converted to an adduct in which cystamine is joined to the 5'-terminal phosphate of the oligonucleotide by a phosphoramidate bond. The adducts are mixed and reduced with dithiothreitol. The dithiothreitol is then removed by dialysis. Oxidation by atmospheric oxygen occurs to yield the required dimer. To join an oligonucleotide to a cysteine-containing peptide or protein, the 5'-cystamine oligomer is first converted to a 2'-pyridyldisulfide adduct and then reacted with an excess of the peptide or protein. If the peptide does not contain a free cysteine residue, it is first treated with iminothiolane to introduce one or more sulfhydryl groups. We have used these procedures to join a 16 mer deoxynucleotide probe and MDV-1 RNA, a substrate of Q beta RNA polymerase. This adduct hybridizes with a complementary target DNA. We have also joined a 16mer probe to peroxidase and MDV-1 RNA to human IgG. The probe-peroxidase adduct maintains enzymatic activity and the MDV-1 RNA-IgG adduct binds to a complementary anti-IgG.  相似文献   

17.
Nucleic acids are an important class of biological macromolecules that carry out a variety of cellular roles. For many functions, naturally occurring DNA and RNA molecules need to fold into precise three-dimensional structures. Due to their self-assembling characteristics, nucleic acids have also been widely studied in the field of nanotechnology, and a diverse range of intricate three-dimensional nanostructures have been designed and synthesized. Different physical terms such as base-pairing and stacking interactions, tertiary contacts, electrostatic interactions and entropy all affect nucleic acid folding and structure. Here we review general computational approaches developed to model nucleic acid systems. We focus on four key areas of nucleic acid modeling: molecular representation, potential energy function, degrees of freedom and sampling algorithm. Appropriate choices in each of these key areas in nucleic acid modeling can effectively combine to aid interpretation of experimental data and facilitate prediction of nucleic acid structure.  相似文献   

18.
Extracellular nucleic acids   总被引:4,自引:0,他引:4  
Extracellular nucleic acids are found in different biological fluids in the organism and in the environment: DNA is a ubiquitous component of the organic matter pool in the soil and in all marine and freshwater habitats. Data from recent studies strongly suggest that extracellular DNA and RNA play important biological roles in microbial communities and in higher organisms. DNA is an important component of bacterial biofilms and is involved in horizontal gene transfer. In recent years, the circulating extracellular nucleic acids were shown to be associated with some diseases. Attempts are being made to develop noninvasive methods of early tumor diagnostics based on analysis of circulating DNA and RNA. Recent observations demonstrated the possibility of nucleic acids exchange between eukaryotic cells and extracellular space suggesting their participation in so far unidentified biological processes.  相似文献   

19.
An easy and efficient procedure for the immobilization of polynucleotide ligands to bisoxirane activated insoluble polysaccharides has been elaborated and is described in this paper. The resulting materials have been applied to the chromatography of DNA polymerase I, and RNA polymerase from E.coli. Because of their extraordinary stability to temperature, formamide, and alkaline conditions they seem to be particularly useful adsorbents for nucleic acid hybridization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号