共查询到20条相似文献,搜索用时 15 毫秒
1.
Begum Alaybeyoglu Berna Sariyar Akbulut 《Journal of biomolecular structure & dynamics》2016,34(11):2387-2398
Discovery of cargo carrying cell-penetrating peptides has opened a new gate in the development of peptide-based drugs that can effectively target intracellular enzymes. Success in application and development of cell-penetrating peptides in drug design depends on understanding their translocation mechanisms. In this study, our aim was to examine the bacterial translocation mechanism of the cell-penetrating pVEC peptide (LLIILRRRIRKQAHAHSK) using steered molecular dynamics (SMD) simulations. The significance of specific residues or regions for translocation was studied by performing SMD simulations on the alanine mutants and other variants of pVEC. Residue-based analysis showed that positively charged residues contribute to adsorption to the lipid bilayer and to electrostatic interactions with the lipid bilayer as peptides are translocated. Translocation takes place in three main stages; the insertion of the N-terminus into the bilayer, the inclusion of the whole peptide inside the membrane and the exit of the N-terminus from the bilayer. These three stages mirror the three regions on pVEC; namely, the hydrophobic N-terminus, the cationic midsection, and the hydrophilic C-terminus. The N-terminal truncated pVEC, I3A, L5A, R7A mutants and scramble-pVEC make weaker interactions with the lipids during translocation highlighting the contribution of the N-terminal residues and the sequence of the structural regions to the translocation mechanism. This study provides atomistic detail about the mechanism of pVEC peptide translocation and can guide future peptide-based drug design efforts. 相似文献
2.
《FEBS letters》2014,588(24):4590-4596
Glycosaminoglycans (GAGs) contribute to the cellular uptake of cationic cell-penetrating peptides (CPPs). However, molecular details about the contributions of GAGs in CPP internalization remain unclear. In this study, we examined the cellular uptake mechanism of the arginine-rich CPP pituitary adenylate-cyclase-activating polypeptide (PACAP). We observed that the uptake efficacy of PACAP is dependent on the expression of cell surface GAGs. As the binding of PACAP to sulfated GAGs induced a random coil-to-α-helix conformational conversion, we investigated the role of the helical formation in PACAP internalization. Whereas this secondary structure was not crucial for efficient internalization in GAGs-deficient cells, PACAP α-helix was essential for GAGs-dependent uptake. 相似文献
3.
Duchardt F Fotin-Mleczek M Schwarz H Fischer R Brock R 《Traffic (Copenhagen, Denmark)》2007,8(7):848-866
The plasma membrane represents an impermeable barrier for most macromolecules. Still some proteins and so-called cell-penetrating peptides enter cells efficiently. It has been shown that endocytosis contributes to the import of these molecules. However, conflicting results have been obtained concerning the nature of the endocytic process. In addition, there have been new findings for an endocytosis-independent cellular entry. In this study, we provide evidence that the Antennapedia-homeodomain-derived antennapedia (Antp) peptide, nona-arginine and the HIV-1 Tat-protein-derived Tat peptide simultaneously use three endocytic pathways: macropinocytosis, clathrin-mediated endocytosis and caveolae/lipid-raft-mediated endocytosis. Antennapedia differs from Tat and R9 by the extent by which the different import mechanisms contribute to uptake. Moreover, at higher concentrations, uptake occurs by a mechanism that originates from spatially restricted sites of the plasma membrane and leads to a rapid cytoplasmic distribution of the peptides. Endocytic vesicles could not be detected, suggesting an endocytosis-independent mode of uptake. Heparinase treatment of cells negatively affects this import, as does the protein kinase C inhibitor rottlerin, expression of dominant-negative dynamin and chlorpromazine. This mechanism of uptake was observed for a panel of different cell lines. For Antp, significantly higher peptide concentrations and inhibition of endocytosis were required to induce its uptake. The relevance of these findings for import of biologically active cargos is shown. 相似文献
4.
Amand HL Boström CL Lincoln P Nordén B Esbjörner EK 《Biochimica et biophysica acta》2011,1808(7):1860-1867
Cell-penetrating peptides (CPPs) gain access to intracellular compartments mainly via endocytosis and have capacity to deliver macromolecular cargo into cells. Although the involvement of various endocytic routes has been described it is still unclear which interactions are involved in eliciting an uptake response and to what extent affinity for particular cell surface components may determine the efficiency of a particular CPP. Previous biophysical studies of the interaction between CPPs and either lipid vesicles or soluble sugar-mimics of cell surface proteoglycans, the two most commonly suggested CPP binding targets, have not allowed quantitative correlations to be established. We here explore the use of plasma membrane vesicles (PMVs) derived from cultured mammalian cells as cell surface models in biophysical experiments. Further, we examine the relationship between affinity for PMVs and uptake into live cells using the CPP penetratin and two analogs enriched in arginines and lysines respectively. We show, using centrifugation to sediment PMVs, that the amount of peptide in the pellet fraction correlates linearly with the degree of cell internalization and that the relative efficiency of all-arginine and all-lysine variants of penetratin can be ascribed to their respective cell surface affinities. Our data show differences between arginine- and lysine-rich variants of penetratin that has not been previously accounted for in studies using lipid vesicles. Our data also indicate greater differences in binding affinity to PMVs than to heparin, a commonly used cell surface proteoglycan mimic. Taken together, this suggests that the cell surface interactions of CPPs are dependent on several cell surface moieties and their molecular organization on the plasma membrane. 相似文献
5.
[目的]研究基于穿膜肽和抗菌肽构效关系改造获得的新肽P7的抗菌活性及其对大肠杆菌(E.coli)的抑菌机制.[方法]微量稀释法和溶血实验分析P7的抑菌活性及其对正常细胞的细胞毒性;采用膜荧光探针、流式细胞术和扫描电镜分析P7对E.coli膜通透性、膜完整性的影响和细胞超微结构变化;通过激光共聚焦分析P7在E.coli细胞中的定位;凝胶阻滞实验测定P7与E.coli基因组DNA结合能力.[结果]P7比母肽显示更强的抑菌活性,最低抑菌浓度范围为4-32 μmol/L,且在作用浓度范围内具有较弱的溶血活性.P7可以增加E.coli外膜和内膜的通透性,使E.coli细胞膜的完整性和细胞表面结构受损.同时P7可以穿过E.coli细胞膜在细胞质聚集并与基因组DNA结合.[结论]P7通过增加E.coli内外膜通透性,穿过细胞膜与胞内DNA结合发挥抑菌活性. 相似文献
6.
C105Y, a synthetic peptide (CSIPPEVKFNKPFVYLI) based on the amino acid sequence corresponding to residues 359-374 of alpha1-antitrypsin, enhances gene expression from DNA nanoparticles. To investigate how this enhancement occurs, C105Y was fluorescently labeled to study its uptake and intracellular trafficking. When human hepatoma cells (HuH7) were incubated with fluorescently labeled C105Y for as little as 3 min, C105Y displayed nuclear and cytoplasmic staining with enrichment of fluorescent signal in the nucleus and nucleolus. Uptake and nucleolar localization were observed with the short sequence PFVYLI, but not with SIPPEVKFNK, and the D-isomer was readily taken up into cells but not into the nucleus. We found that the C105Y peptide is routed to the nucleolus very rapidly in an energy-dependent fashion, whereas membrane translocation and nuclear localization are energy-independent. When we tested the involvement of known endocytosis pathways in uptake and trafficking of this peptide, we demonstrated that C105Y peptide is internalized by a clathrin- and caveolin-independent pathway, although lipid raft-mediated endocytosis may play a role in peptide intracellular trafficking. Efficient energy-independent cell entry with rapid nuclear localization probably accounts for enhancement of gene expression from inclusion of C105Y into DNA nanoparticles. 相似文献
7.
Antennapedia and other homeoproteins have the unique ability to efficiently translocate across biological membranes, a property that is mediated by the third helix of the homeodomain. To analyze the effects of sequence divergence in the homeodomain, we have compared the cellular uptake efficiencies and interaction properties in a membrane-mimicking environment of four peptides corresponding to the third helix sequence of Antennapedia, Engrailed-2, HoxA-13, and Knotted-1. NMR studies revealed that these peptides adopt helical conformations in SDS micelles. Their localization with respect to the micelle was investigated using Mn(2+) as a paramagnetic probe. Peptides are positioned parallel to the micelle surface, but subtle differences in the depth of immersion were observed. Using a recently developed method for quantification of CPP cellular uptake based on MALDI-TOF mass spectrometry, all of these peptides were found to translocate into cells but with large differences in their uptake efficiencies. The peptide with the highest uptake efficiency was found to be the least deeply inserted within the micelle, indicating that electrostatic surface interactions may be a major determinant for membrane translocation. A new cell-penetrating peptide derived from Knotted-1 homeodomain with improved uptake properties compared to penetratin is introduced here. 相似文献
8.
Evidence for an amphipathicity independent cellular uptake of amphipathic cell-penetrating peptides.
A Scheller B Wiesner M Melzig M Bienert J Oehlke 《European journal of biochemistry》2000,267(19):6043-6050
The cellular uptake of a peptide set derived from membrane-permeable alpha-helical amphipathic peptides by stepwise alterations of structure forming propensity and charge was studied by confocal laser scanning microscopy (CLSM) combined with HPLC. For CLSM monitoring, an online protocol was employed that avoided bias of the uptake results by washout. Using this protocol, extensive fluorescence, approaching the intensity of the external peptide, was observed in the cytosol and nucleus within minutes in all cases, irrespective of the degree of amphipathicity. HPLC analyses of the cell lysates revealed the unmetabolized peptides to be the predominant source of the intracellular fluorescence. Significant amphipathicity-dependent differences became apparent only after washing the peptide-loaded cells, reflecting the effects of amphipathicity on resistance to wash out. Exposure of the cells to the peptides at 37 and 0 degrees C led to similar results, indicating the nonendocytic character of the uptake. With a view to practical applications, the results of the present study open the possibility of exploiting nonamphipathic peptides as vectors for translocating polar compounds into the cell interior, which would circumvent substantial obstacles currently connected with the use of amphipathic vector peptides, such as membrane toxicity and low solubility. Moreover, differences in the uptake of several members of the investigated peptide series into different cell types present a promising basis for the design of cell-type specific vector peptides. 相似文献
9.
The identification of cell-penetrating peptides (CPPs) as vectors for the intracellular delivery of conjugated molecules such as peptides, proteins, and oligonucleotides has emerged as a significant tool to modulate biological activities inside cells. The mechanism of CPP uptake by the cells is still unclear, and appears to be both endocytotic and non-endocytotic, depending on the CPP and cell type. Moreover, it is also unknown whether cargo sequences have an effect on the uptake and cellular distribution properties of CPP sequences. Here, we combine results from quantitative fluorescence microscopy and binding to lipid membrane models to determine the effect of cargo peptide molecules on the cellular uptake and distribution of the arginine-rich CPPs, R7, and R7W, in live cells. Image analysis algorithms that quantify fluorescence were used to measure the relative amount of peptide taken up by the cell, as well as the extent to which the uptake was endocytotic in nature. The results presented here indicate that fusion of arginine-rich CPPs to peptide sequences reduces the efficiency of uptake, and dramatically changes the cellular distribution of the CPP from a diffuse pattern to one in which the peptides are mostly retained in endosomal compartments. 相似文献
10.
The interaction between phospholipids and polynuclear platinum drugs was studied as a mechanism model for cellular uptake of anticancer drugs. The interaction was studied by differential scanning calorimetry (DSC), 31P nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma optical emission spectroscopy (ICP-OES), and electrospray ionization mass spectrometry (ESI-MS). The transition temperature, enthalpy, and entropy of negatively charged phospholipids DPPS, DPPA, and DPPG were changed upon reaction with the trinuclear platinum complex [{trans-PtCl(NH3)2}2mu-Pt(NH3)2{H2N(CH2)6NH2}2](NO3)4 (I, BBR3464) and the dinuclear analogue [{trans-PtCl(NH3)2}mu-{(NH2)(CH2)3NH2(CH2)4(NH2)}Cl3 (II, BBR3571). This suggests that these platinum complexes interacted not only with the phosphate headgroup but also with the region of the fatty acid tail of liposomes and finally changed the fluidity of the membrane. Both noncovalent (presumably electrostatic and hydrogen bonding) and covalent interactions were involved in the reactions of the negatively charged phospholipids DPPA, DPPS, and DPPG with the highly positively charged platinum complexes. In contrast, few differences were seen for the zwitterionic phospholipids DPPC and DPPE. The binding ratio of BBR3464 to DPPA liposomes was higher than the ratio of BBR3464 to DPPS liposomes, and similar differences were seen for BBR3571. The binding ratios of the platinum complexes to negatively charged phospholipids DPPA, DPPS, and DPPG were slightly lower in a 100 mM chloride solution than in a chloride-free solution. The binding of BBR3464 and BBR3571 with the liposomes was significantly stronger than that with cis-[PtCl2(NH3)2], cisplatin. ESI-MS confirmed that the products of the incubation of BBR3464 with DPPA and DPPS correspond to chloride displacement and formation of [Pt3(NH3)6{NH2(CH2)6NH2}2(DPPA)2]2+ (1) and [Pt3(NH3)6{NH2(CH2)6NH2}2(DPPS)2]2+ (2), respectively. Similar observations were made for BBR3571. 31P NMR spectra confirmed that the site of binding for DPPA was the phosphate oxygen, whereas for DPPS, a binding site of the nitrogen of the serine side chain is indicated. Noncovalent interactions were also confirmed by use of the analogue [{Pt(NH3)3}2mu-Pt(NH3)2{H2N(CH2)6NH2}2](NO3)6 (III, 0,0,0/t,t,t). The implications of these results for the mechanism of cellular uptake of polynuclear platinum complexes are discussed. 相似文献
11.
The identification of cell-penetrating peptides (CPPs) as vectors for the intracellular delivery of conjugated molecules such as peptides, proteins, and oligonucleotides has emerged as a significant tool to modulate biological activities inside cells. The mechanism of CPP uptake by the cells is still unclear, and appears to be both endocytotic and non-endocytotic, depending on the CPP and cell type. Moreover, it is also unknown whether cargo sequences have an effect on the uptake and cellular distribution properties of CPP sequences. Here, we combine results from quantitative fluorescence microscopy and binding to lipid membrane models to determine the effect of cargo peptide molecules on the cellular uptake and distribution of the arginine-rich CPPs, R7, and R7W, in live cells. Image analysis algorithms that quantify fluorescence were used to measure the relative amount of peptide taken up by the cell, as well as the extent to which the uptake was endocytotic in nature. The results presented here indicate that fusion of arginine-rich CPPs to peptide sequences reduces the efficiency of uptake, and dramatically changes the cellular distribution of the CPP from a diffuse pattern to one in which the peptides are mostly retained in endosomal compartments. 相似文献
12.
Emelía Eiríksdóttir Karidia Konate Ülo Langel Gilles Divita Sébastien Deshayes 《生物化学与生物物理学报:生物膜》2010,1798(6):1119-1128
The clinical use of efficient therapeutic agents is often limited by the poor permeability of the biological membranes. In order to enhance their cell delivery, short amphipathic peptides called cell-penetrating peptides (CPPs) have been intensively developed for the last two decades. CPPs are based either on protein transduction domains, model peptide or chimeric constructs and have been used to deliver cargoes into cells through either covalent or non-covalent strategies. Although several parameters are simultaneously involved in their internalization mechanism, recent focuses on CPPs suggested that structural properties and interactions with membrane phospholipids could play a major role in the cellular uptake mechanism. In the present work, we report a comparative analysis of the structural plasticity of 10 well-known CPPs as well as their ability to interact with phospholipid membranes. We propose a new classification of CPPs based on their structural properties, affinity for phospholipids and internalization pathways already reported in the literature. 相似文献
13.
Zhu WL Lan H Park IS Kim JI Jin HZ Hahm KS Shin SY 《Biochemical and biophysical research communications》2006,349(2):769-774
Here, we report the successful design of a novel bacteria-selective antimicrobial peptide, Pep-1-K (KKTWWKTWWTKWSQPKKKRKV). Pep-1-K was designed by replacing Glu-2, Glu-6, and Glu-11 in the cell-penetrating peptide Pep-1 with Lys. Pep-1-K showed strong antibacterial activity against reference strains (MIC = 1-2 microM) of Gram-positive and Gram-negative bacteria as well as against clinical isolates (MIC = 1-8 microM) of methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. In contrast, Pep-1-K did not cause hemolysis of human erythrocytes even at 200 microM. These results indicate that Pep-1-K may be a good candidate for antimicrobial drug development, especially as a topical agent against antibiotic-resistant microorganisms. Tryptophan fluorescence studies indicated that the lack of hemolytic activity of Pep-1-K correlated with its weak ability to penetrate zwitterionic phosphatidylcholine/cholesterol (10:1, w/w) vesicles, which mimic eukaryotic membranes. Furthermore, Pep-1-K caused little or no dye leakage from negatively charged phosphatidylethanolamine/phosphatidylglycerol (7:3, w/w) vesicles, which mimic bacterial membranes but had a potent ability to cause depolarization of the cytoplasmic membrane potential of intact S. aureus cells. These results suggested that Pep-1-K kills microorganisms by not the membrane-disrupting mode but the formation of small channels that permit transit of ions or protons but not molecules as large as calcein. 相似文献
14.
Enhancement of protein translocation across the membrane by specific mutations in the hydrophobic region of the signal peptide. 总被引:4,自引:3,他引:1 下载免费PDF全文
The hydrophobic region of the signal peptide of the OmpA protein of the Escherichia coli outer membrane was extensively altered in its hydrophobicity and predicted secondary structure by site-specific mutagenesis. The mutated signal peptides were fused to nuclease A from Staphylococcus aureus, and the function of the signal peptide was examined by measuring the rate of processing of the signal peptide. Six of the 12 mutated signal peptides in the nuclease hybrid were processed faster than the wild-type. In particular, the processing of the mutated signal peptide in which the alanine residue at position 9 was substituted with a valine residue was enhanced almost twofold over the processing of the wild-type signal peptide. In addition, the production of nuclease A fused with this mutated signal peptide also increased twofold. However, these effects were not observed when the mutated signal peptide was fused to TEM beta-lactamase. Analysis of the present mutations suggests that both overall hydrophobicity and distinct structural requirements in the hydrophobic region have important roles in signal peptide function. 相似文献
15.
Tetracyclines probably penetrate bacterial cells by passive diffusion and inhibit bacterial growth by interfering with protein
synthesis or by destroying the membrane. A growing number of various bacterial species acquire resistance to the bacteriostatic
activity of tetracycline. The two widespread mechanisms of bacterial resistance do not destroy tetracycline: one is mediated
by efflux pumps, the other involves an EF-G-like protein that confers ribosome protection. Oxidative destruction of tetracycline
has been found in a few species. Several efflux transporters, including multidrug-resistance pumps and tetracycline-specific
exporters, confer bacterial resistance against tetracycline. Single amino acids of these carrier proteins important for tetracycline
transport and substrate specificity have been identified, allowing the mechanism of tetracycline transport to begin to emerge.
Received: 19 January 1996 / Accepted: 1 March 1996 相似文献
16.
Begoña Ugarte-Uribe Santiago Grijalvo Samuel Núñez Pertíñez Jon V. Busto César Martín Adele Alagia Félix M. Goñi Ramón Eritja Itziar Alkorta 《Bioorganic & medicinal chemistry》2017,25(1):175-186
The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid–oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3′- and 5′-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5′-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies. 相似文献
17.
《生物化学与生物物理学报:生物膜》2015,1848(2):593-602
Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp ~ 105) and that they are located just below the lipid headgroups (~ 10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability. 相似文献
18.
19.
Imre Mäger Emelía Eiríksdóttir Samir EL Andaloussi Ülo Langel 《生物化学与生物物理学报:生物膜》2010,1798(3):338-1672
Cell-penetrating peptides (CPPs) have shown great potency for cargo delivery both in vitro and in vivo. Different biologically relevant molecules need to be delivered into appropriate cellular compartments in order to be active, for instance certain drugs/molecules, e.g. antisense oligonucleotides, peptides, and cytotoxic agents require delivery into the cytoplasm. Assessing uptake mechanisms of CPPs can help to develop novel and more potent cellular delivery vectors, especially in cases when reaching a specific intracellular target requires involvement of a specific internalization pathway. Here we measure the overall uptake kinetics, with emphasis on cytoplasmic delivery, of three cell-penetrating peptides M918, TP10 and pVec using a quenched fluorescence assay. We show that both the uptake levels and kinetic constants depend on the endocytosis inhibitors used in the experiments. In addition, in some cases only the internalization rate is affected by the endocytosis inhibitors while the total uptake level is not and vice versa, which emphasizes importance of kinetic studies when assessing the uptake mechanisms of CPPs. Also, there seems to be a correlation between lower total cellular uptake and higher first-order rate constants. Furthermore, this may indicate simultaneous involvement of different endocytic pathways with different efficacies in the internalization process, as hypothesized but not shown earlier in an uptake kinetics assay. 相似文献
20.
Contributions of glycosaminoglycan binding and clustering to the biological uptake of the nonamphipathic cell-penetrating peptide WR9 总被引:1,自引:0,他引:1
Many cell-penetrating peptides (CPPs) bind to glycosaminoglycans (GAG) located on the extracellular side of biological tissues. CPP binding to the cell surface is intimately associated with clustering of surface molecules and is usually followed by uptake into the cell interior. We have investigated the uptake mechanism by comparing CPPs which bind, but cannot induce, GAG clustering with those which do induce GAG clustering. We have synthesized the tryptophan-labeled CPP nona-l-arginine (WR(9)) and its monodispersely PEGylated derivate (PEG(27)-WR(9)) and have compared them with respect to glycan binding, glycan clustering, and their uptake into living cells. Both CPPs bind to the GAG heparin with high affinity (K(D) ~ 100 nM), but the PEGylation prevents the GAG clustering. Thus, it is possible to uncouple and analyze the contributions of GAG binding and GAG clustering to the biological CPP uptake. The uptake of PEG-WR(9) into CH-K1 cells is confined to intracellular vesicles, where colocalization with transferrin attests to an endocytic uptake. Transfection experiments with plasmid DNA for GFP revealed poor GFP expression, suggesting that endocytic uptake of PEG-WR(9) is compromised by insufficient release from endocytic vesicles. In contrast, WR(9) shows two uptake routes. At low concentration (<5 μM), WR(9) uptake occurs mainly through endocytosis. At higher concentration, WR(9) uptake is greatly enhanced, showing a diffuse spreading over the entire cytoplasm and nucleus-a phenomenon termed "transduction". Transduction of WR(9) leads to a higher GFP expression as compared to PEG-WR(9) endocytosis but also damages the plasma membrane as evidenced by SYTOX Green staining. The results suggest that GAG binding without and with GAG clustering induce two different pathways of CPP uptake. 相似文献