首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

2.
To identify amino acid sequences in factor Xa (fXa) and prothrombin (fII) that may be involved in prothrombinase complex (fXa.factor Va.fII.phospholipids) assembly, synthetic peptides based on fXa and fII sequences were prepared and screened for their ability to inhibit fXa-induced clotting of normal plasma. One fII peptide (PT557-571 homologous to chymotrypsin (CHT) residues 225-239) and two fXa peptides (X404-418, CHT231-244, and X415-429, CHT241-252C) potently inhibited plasma clotting and prothrombinase activity with 50% inhibition between 41 and 115 microM peptide. Inhibition of prothrombinase by PT557-571 and X415-429 was fVa-independent, whereas the inhibition by X404-418 was fVa-dependent. X404-418 inhibited the binding of fVa to fluorescein-labeled, inhibited fXai in the presence of phosphatidylcholine/phosphatidylserine vesicles, whereas X415-429 inhibited binding of fII to phospholipid-bound fluorescein-labeled, inhibited fXai. PT557-571 altered the fluorescence emission of fluorescein-labeled fXai, showing that PT557-571 binds to fXai. These data suggest that residues 404-418 in fXa provide fVa binding sites, whereas residues 557-571 in fII and 415-429 in fXa mediate interactions between fXa and fII in the prothrombinase complex.  相似文献   

3.
To identify sequences in prothrombin (fII) involved in prothrombinase complex (fXa.fVa.fII.phospholipids) assembly, synthetic peptides based on fII sequences were prepared and screened for their ability to inhibit factor Xa (fXa)-induced clotting of normal plasma. The fII peptide (PT473-487, homologous to chymotrypsin residues 149D-163) potently inhibited plasma clotting assays and prothrombinase activity, with 50% inhibition of 12 and 10 microm peptide, respectively. Prothrombinase inhibition by PT473-487 was factor Va (fVa)-dependent and sequence-specific, because the peptide did not inhibit fII activation in the absence of fVa, and a scrambled sequence peptide, PT473-487SCR, was not inhibitory. Peptide PT473-487 did not inhibit the amidolytic activities of fXa and thrombin, suggesting that the peptide did not alter the integrity of their active sites. To determine whether PT473-487 interacted directly with fVa, fluorescein-labeled fVa (Fl-fVa) was prepared. When PT473-487 was titrated into samples containing phospholipid-bound Fl-fVa, the peptide increased fluorescein anisotropy (EC(50) at 3 microm peptide), whereas the control peptide PT473-487SCR did not alter the anisotropy, suggesting a direct binding interaction between PT473-487 and Fl-fVa. These functional and spectroscopic data suggest that fII residues 473-487 provide fVa-binding sites and mediate interactions between fVa and fII in the prothrombinase complex.  相似文献   

4.
Yang L  Manithody C  Qureshi SH  Rezaie AR 《Biochemistry》2008,47(22):5976-5985
Structural and mutagenesis data have indicated that the 220-loop of thrombin is stabilized by a salt-bridge between Glu-217 and Lys-224, thereby facilitating the octahedral coordination of Na (+) with contributions from two carbonyl O atoms of Arg-221a and Lys-224. All three residues are also conserved in fXa and the X-ray crystal structure of fXa indicates that both Glu-217 and Lys-224 are within hydrogen-bonding distance from one another. To investigate the role of these three residues in the catalytic function of fXa and their contribution to interaction with Na (+), we substituted them with Ala and characterized their properties in both amidolytic and proteolytic activity assays. The results indicate that the affinity of all three mutants for interaction with Na (+) has been impaired. The mutant with the greatest loss of affinity for Na (+) (E217A or E217Q) also exhibited a dramatic impairment ( approximately 3-4 orders of magnitude) in its activity toward both synthetic and natural substrates. Interestingly, factor Va (fVa) restored most of the catalytic defect with prothrombin, but not with the synthetic substrate. Both Glu-217 mutants exhibited a near normal affinity for fVa in the prothrombinase assay, but a markedly lower affinity for the cofactor in a direct-binding assay. These results suggest that, similar to thrombin, an ionic interaction between Glu-217 and Lys-224 stabilizes the 220-loop of fXa for binding Na (+). They further support the hypothesis that the Na (+) and fVa-binding sites of fXa are energetically linked and that a cofactor function for fVa in the prothrombinase complex involves inducing a conformational change in the 220-loop of fXa that appears to stabilize this loop in the Na (+)-bound active conformation.  相似文献   

5.
Herein we describe a recombinant factor X (fX) with a single substitution at position 347 (fXR347N). Activated fXR347N had a reduced affinity for factor Va (fVa), although the catalytic impact of fVa binding remained intact. The mutation was selective as demonstrated by normal activation and inhibition, except in the presence of subsaturating heparin where the rate of inhibition by antithrombin III (ATIII) was 15% of normal. The reactivity of fXaR347N toward prothrombin was equivalent to wild-type fXa (fXaWT) in the absence of fVa and phospholipid. Addition (without phospholipid) of fVa dramatically increased the catalytic efficiency of fXaWT toward prothrombin but had a negligible effect on fXaR347N. On addition of phosphatidylcholine:phosphatidylserine (PC:PS, 3:1) vesicles, fXaR347Ndisplayed an increased catalytic activity in response to fVa, but the apparent affinity for fVa on the phospholipid surface was 5-20-fold lower than that of fXaWT. On an activated platelet surface, however, fXaWT and fXaR347N activated prothrombin similarly. In a competitive binding assay that measures the displacement of radiolabeled fXa from fVa on a phospholipid surface, fXaR347N was approximately 10-fold less effective than fXaWT. Substitution of fXa at position 347 selectively attenuates the interaction between fXa and fVa without affecting its catalytic activity.  相似文献   

6.
Blood coagulation reactions are strongly influenced by phospholipids, but little is known about the influence of sphingolipids on coagulation mechanisms. Lysosulfatide (lyso-SF) (sulfogalactosyl sphingosine) prolonged factor Xa (fXa) 1-stage plasma clotting assays, showing it had robust anticoagulant activity. In studies using purified clotting factors, lyso-SF inhibited >90% of prothrombin (II) activation for reaction mixtures containing fXa/factor Va (fVa)/II, and also inhibited II activation generation by fXa/ phospholipids and by Gla-domainless-fXa/fVa/phospholipids. When lyso-SF analogs were tested, results showed that N-acetyl-sulfatide was not anticoagulant, implying that the free amine group was essential for the anticoagulant effects of lyso-SF. Lyso-SF did not inhibit fXa enzymatic hydrolysis of small peptide substrates, showing it did not directly inhibit the fXa activity. In surface plasmon resonance studies, lyso-SF bound to immobilized inactivated fXa as well as inactivated Gla-domainless-fXa. Confirming this lyso-SF:fXa interaction, fluorescence studies showed that fluorescently-labeled-fXa in solution bound to lyso-SF. Thus, lyso-SF is an anticoagulant lipid that inhibits fXa when this enzyme is bound to either phospholipids or to fVa. Mechanisms for inhibition of procoagulant activity are likely to involve lyso-SF binding to fXa domain(s) that are distinct from the fXa Gla domain. This suggests that certain sphingolipids, including lyso-SF and some of its analogs, may down-regulate fXa activity without inhibiting the enzyme’s active site or binding to the fXa Gla domain.  相似文献   

7.
We reported previously that residue 347 in activated fX (fXa) contributes to binding of the cofactor, factor Va (fVa) (Rudolph, A. E., Porche-Sorbet, R. and Miletich, J. P. (2000) Biochemistry 39, 2861-2867). Four additional residues that participate in fVa binding have now been identified by mutagenesis. All five resulting fX species, fX(R306A), fX(E310N), fX(R347N), fX(K351A), and fX(K414A), are activated and inhibited normally. However, the rate of inhibition by antithrombin III in the presence of submaximal concentrations of heparin is reduced for all the enzymes. In the absence of fVa, all of the enzymes bind and activate prothrombin similarly except fXa(E310N), which has a reduced apparent affinity ( approximately 3-fold) for prothrombin compared with wild type fXa (fXa(WT)). In the absence of phospholipid, fVa enhances the catalytic activity of fXa(WT) significantly, but the response of the variant enzymes was greatly diminished. On addition of 100 nm PC:PS (3:1) vesicles, fVa enhanced fXa(WT), fXa(R306A), and fXa(E310N) similarly, whereas fXa(R347N), fXa(K351A), and fXa(K414A) demonstrated near-normal catalytic activity but reduced apparent affinity for fVa under these conditions. All enzymes function similarly to fXa(WT) on activated platelets, which provide saturating fVa on an ideal surface. Loss of binding affinity for fVa as a result of the substitutions in residues Arg-347, Lys-351, and Lys-414 was verified by a competition binding assay. Thus, Arg-347, Lys-351, and Lys-414 are likely part of a core fVa binding site, whereas Arg-306 and Glu-310 serve a less critical role.  相似文献   

8.
Activated protein C (APC) inactivates factor Va (fVa) by proteolytically cleaving fVa heavy chain at Arg(506), Arg(306), and Arg(679). Factor Xa (fXa) protects fVa from inactivation by APC. To test the hypothesis that fXa and APC share overlapping fVa binding sites, 15 amino acid-overlapping peptides representing the heavy chain (residues 1-709) of fVa were screened for inhibition of fVa inactivation by APC. As reported, VP311-325, a peptide comprising residues 311-325 in fVa, dose-dependently and potently inhibited fVa-dependent prothrombin activation by fXa in the absence of APC. This peptide also inhibited the inactivation of fVa by APC, suggesting that this region of fVa interacts with APC. The peptide inhibited the APC-dependent cleavage of both Arg(506) and Arg(306) because inhibition was observed with plasma-derived fVa and recombinant R506Q and RR306/679QQ fVa. VP311-325 altered the fluorescence emission of dansyl-active site-labeled APC(i) but not a dansyl-active site-labeled thrombin control, showing that the peptide binds to APC(i). This peptide also inhibited the resonance energy transfer between membrane-bound fluorescein-labeled fVa (donor) and rhodamine-active site-labeled S360C-APC (acceptor). These data suggest that peptide VP311-325 represents both an APC and fXa binding region in fVa.  相似文献   

9.
Based on homology, amino acids 326-336 (143-154 in chymotrypsin numbering) of factor X (fX) comprise a flexible surface loop, which is susceptible to self-proteolysis and influences substrate catalysis. To investigate the role of this autolysis loop in fX function, a recombinant variant with a new site for asparagine-linked glycosylation has been produced by changing glutamine 333 to asparagine. Q333N fX is activated normally by factor VIIa and tissue factor, factors IXa and VIIIa, and Russell's viper venom. Proteolysis of the loop is prevented by the mutation. Reactivity of the free enzyme toward substrates and inhibitors is attenuated 4-20-fold; relative to wild type fXa, Spectrozyme Xa(TM) hydrolysis is 25%, inhibition by antithrombin III and the tissue factor pathway inhibitor is approximately 20%, and prothrombin activation in the absence of the cofactor Va is only 5%. Surprisingly, activities of the variant and wild type enzymes are equivalent when part of the prothrombinase complex. N-Glycanase cleaves the new oligosaccharide from Q333N fXa leaving aspartic acid. Q333D fXa is approximately 1.6-fold more reactive with Spectrozyme Xa(TM), antithrombin III and tissue factor pathway inhibitor, and prothrombin than its glycosylated counterpart, Q333N fXa, but still quite abnormal relative to wild type fXa. Like Q333N fXa, Q333D fXa is fully functional as part of the prothrombinase complex. We conclude that Gln-333 is geographically close to a site of proteolytic degradation but not to activator, cofactor, or membrane binding sites. Mutation of Gln-333 impairs catalytic function, but given normal prothrombin activation by the complexed enzyme, the importance of Gln-333 for catalysis is not manifest in the prothrombinase assembly, suggesting a conformational change in complexed fXa.  相似文献   

10.
Heparin and heparin fragments in the molecular mass range 1,700-20,000 Da were examined for their ability to accelerate the antithrombin III (AT III)-dependent inhibition of human factor Xa and the prothrombin converting complex (prothrombinase) during human prothrombin activation. The prothrombinase reaction was modeled by a 3-parameter 2-exponential equation to determine the initial rate of prothrombin activation and the pseudo-first order rate constants of inhibition of prothrombinase and in situ generated thrombin activity. The catalytic specific activities of the heparins increased with increasing molecular size for both the inhibition of prothrombinase and factor Xa. A 10-fold increase over the entire Mr range was found. In contrast to results obtained by others (Ellis, V., Scully, M. F., and Kakkar, V. V. (1986) Biochem. J. 233, 161-165; Barrowcliffe, T. W., Havercroft, S. J., Kemball-Cook, G., and Lindahl, U. (1987) Biochem. J. 243, 31-37), all the heparins showed a 5-fold higher rate of inhibition of factor Xa when compared with the inhibition of prothrombinase, indicating that the factor Va-mediated protection of factor Xa from inhibition by AT III/heparin is independent of the molecular size of the heparin. Our original approach has also revealed a hitherto unrecognized phenomenon, namely, in addition to the accelerating effect of the heparins on the rate of formation of the inactive AT III-factor Xa complex, heparins with Mr greater than 4,500 reduce the initial rate of thrombin generation in the presence of AT III in a concentration-dependent way. We hypothesize that the formation of the dissociable ternary AT III-heparin-factor Xa complex results in a (partial) loss of factor Xa activity towards its natural substrate prothrombin.  相似文献   

11.
A prothrombinase complex of mouse peritoneal macrophages   总被引:3,自引:0,他引:3  
Addition of prothrombin to mouse peritoneal macrophages in vitro resulted in the formation of a thrombin-like enzyme, as demonstrated by use of the luminogenic peptide substrate S-2621. The prothrombinase activity was sedimented by high-speed centrifugation following homogenization of the cells and was abolished by treatment of the cells with the nonionic detergent Triton X-100 at 0.02% concentration. Moreover, the activity was drastically reduced by maintaining cultures in the presence of warfarin and, presumably due to competitive substrate inhibition, by adding S-2222, a chromogenic peptide substrate for Factor Xa. These findings suggest that prothrombin cleavage is catalyzed by Factor Xa at the macrophage surface. The generated thrombin was inhibited by antithrombin, and this reaction was accelerated by heparin with high affinity for antithrombin but not by the corresponding oligosaccharides composed of 8-14 monosaccharide units. Such oligosaccharides which are capable of accelerating the inactivation of Factor Xa by antithrombin, inhibited thrombin formation from prothrombin in the macrophage cultures, presumably by promoting inactivation by antithrombin of Factor Xa in a prothrombinase complex. Activation of the macrophage coagulation system, as proposed to occur in certain inflammatory conditions, thus may be modulated at various levels by heparin, or heparin oligosaccharides, released from mast cells.  相似文献   

12.
Single chain factor V (fV) circulates as an Mr 330,000 quiescent pro-cofactor. Removal of the B domain and generation of factor Va (fVa) are vital for procoagulant activity. We investigated the role of the basic amino acid region 1000–1008 within the B domain of fV by constructing a recombinant mutant fV molecule with all activation cleavage sites (Arg709/Arg1018/Arg1545) mutated to glutamine (fVQ3), a mutant fV molecule with region 1000–1008 deleted (fVΔB9), and a mutant fV molecule containing the same deletion with activation cleavage sites changed to glutamine (fVΔB9/Q3). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS-7L cells, purified, and assessed for their ability to bind factor Xa (fXa) prior to and following incubation with thrombin. The data showed that fVQ3 was severely impaired in its interaction with fXa before and after incubation with thrombin. In contrast, KD(app) values for fVΔB9 (0.9 nm), fVaΔB9 (0.4 nm), and fVΔB9/Q3 (0.7 nm) were similar to the affinity of fVaWT for fXa (0.3 nm). Two-stage clotting assays revealed that although fVQ3 was deficient in its clotting activity, fVΔB9/Q3 had clotting activity comparable with fVaWT. The kcat value of prothrombinase assembled with fVΔB9/Q3 was minimally affected, whereas the Km value of the reaction was increased 57-fold compared with the Km value obtained with prothrombinase assembled with fVaWT. These findings strongly suggest that amino acid region 1000–1008 of fV is a regulatory sequence protecting the organisms from spontaneous binding to fXa and unnecessary prothrombinase complex formation, which in turn results in catastrophic physiological consequences.  相似文献   

13.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2002,41(21):6780-6788
The autolysis loop of factor Xa (fXa) has four basic residues (Arg(143), Lys(147), Arg(150), and Arg(154)) whose contribution to protease specificity of fXa has not been examined. Here, we substituted these basic residues individually with Ala in the fX cDNA and expressed them in mammalian cells using a novel expression/purification vector system. Following purification to homogeneity and activation by the factor X activator from Russell viper venom, the mutants were characterized with respect to their ability to assemble into the prothrombinase complex to activate prothrombin and interact with target plasma fXa inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin. We show that all mutants interacted with factor Va with normal affinities and exhibited wild-type-like prothrombinase activities toward prothrombin. Lys(147) and Arg(154) mutants were inhibited by TFPI approximately 2-fold slower than wild type; however, both Arg(143) and Arg(150) mutants were inhibited normally by the inhibitor. The reactivities of Arg(143) and Lys(147) mutants were improved approximately 2-fold with antithrombin in the absence but not in the presence of heparin cofactors. On the other hand, the pentasaccharide-catalyzed reactivity of antithrombin with the Arg(150) mutant was impaired by an order of magnitude. These results suggest that Arg(150) of the autolysis loop may specifically interact with the activated conformation of antithrombin.  相似文献   

14.
We have determined the rate constants of inactivation of factor Xa and thrombin by antithrombin III/heparin during the process of prothrombin activation. The second-order rate constant of inhibition of factor Xa alone by antithrombin III as determined by using the synthetic peptide substrate S-2337 was found to be 1.1 X 10(6) M-1 min-1. Factor Xa in prothrombin activation mixtures that contained prothrombin, and either saturating amounts of factor Va or phospholipid (20 mol % dioleoylphosphatidylserine/80 mol % dioleoylphosphatidylcholine, 10 microM), was inhibited by antithrombin III with a second-order rate constant that was essentially the same: 1.2 X 10(6) M-1 min-1. When both factor Va and phospholipid were present during prothrombin activation, factor Xa inhibition by antithrombin III was reduced about 10-fold, with a second-order rate constant of 1.3 X 10(5) M-1 min-1. Factor Xa in the prothrombin activation mixture that contained both factor Va and phospholipid was even more protected from inhibition by the antithrombin III-heparin complex. The first-order rate constants of these reactions at 200 nM antithrombin III and normalized to heparin at 1 microgram/mL were 0.33 and 9.5 min-1 in the presence and absence of factor Va and phospholipid, respectively. When the prothrombin concentration was varied widely around the Km for prothrombin, this had no effect on the first-order rate constants of inhibition. It is our conclusion that factor Xa when acting in prothrombinase on prothrombin is profoundly protected from inhibition by antithrombin III in the absence as well as in the presence of heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Factor-Xa assembly into the prothrombinase complex decreases its availability for inhibition by antithrombin + unfractionated heparin (AT + UFH). We have developed a novel covalent antithrombin-heparin complex (ATH), with enhanced anticoagulant actions compared with AT + UFH. The present study was performed to extend understanding of the anticoagulant mechanisms of ATH by determining its inhibition of Xa within the critical prothrombinase. Discontinuous inhibition assays were performed to determine final k(2) values for inhibition of Xa. Fluorescent microscopy was conducted to evaluate inhibitor-prothrombinase interactions. The k(2) for inhibition of prothrombinase versus free Xa by AT + UFH was lower, whereas for ATH were much higher. Relative to intact prothrombinase, rates for Xa inhibition by AT + UFH in complexes devoid of prothrombin/vesicles/factor-Va were higher. For ATH, exclusion of prothrombin decreased k(2), removal of vesicles increased k(2) and exclusion of factor-Va gave no effect. While UFH may displace Xa from prothrombinase, Xa is detained within prothrombinase during ATH reactions. We confirm prothrombinase hinders inhibitory action of AT + UFH, whereas ATH is less affected with prothrombin being a key component in the complex responsible for the opposing effects. Overall, the results suggest that covalent linkage between AT-heparin assists access and neutralization of complexed Xa, with concomitant inhibition of prothrombinase function compared with conventional non-conjugated heparin.  相似文献   

16.
Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473–487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser478–Val479–Leu480–Gln481–Val482. Single, double, and triple point mutations within this stretch of rFII allowed for the identification of Leu480 and Gln481 as the two essential amino acids responsible for the enhanced activation of FII by prothrombinase. Unanticipated results demonstrated that although recombinant wild type α-thrombin and rIIaS478A were able to induce clotting and activate factor V and factor VIII with rates similar to the plasma-derived molecule, rIIaSLQ→AAA with mutations S478A/L480A/Q481A was deficient in clotting activity and unable to efficiently activate the pro-cofactors. This molecule was also impaired in protein C activation. Similar results were obtained with rIIaΔSLQ (where rIIaΔSLQ is recombinant human α-thrombin with amino acids Ser478/Leu480/Gln481 deleted). These data provide new evidence demonstrating that amino acid sequence Leu480–Gln481: 1) is crucial for proper recognition of the fVa-dependent site(s) for fXa within prothrombinase on FII, required for efficient initial cleavage of FII at Arg320; and 2) is compulsory for appropriate tethering of fV, fVIII, and protein C required for their timely activation by IIa.  相似文献   

17.
The factor Va (FVa) inactivation by activated protein C (APC), mediated by cleavages at Arg306 and Arg506 in FVa, is inhibited by both factor Xa (FXa) and prothrombin. Although FXa is known to specifically inhibit the Arg506 cleavage, the effect of prothrombin has not been confined to one cleavage site. We used recombinant FV variants, FV:R506Q/R679Q and FV:R306Q/R679Q, to investigate the effect of prothrombin on the individual cleavage sites. The APC-mediated FVa inhibition was monitored by a prothrombinase-based FVa assay, and apparent first order rate constants were calculated for each of the cleavage sites both in the presence and absence of prothrombin. Prothrombin impaired cleavages at both Arg306 and Arg506 and the inhibition correlated with a delayed appearance of proteolytic products on Western blots. Almost complete inhibition was obtained at around 3 microm prothrombin, whereas half-maximal inhibition was obtained at 0.7 microm prothrombin. After cleavage of prothrombin by thrombin, the inhibitory activity was lost. The inhibitory effect of prothrombin on APC-mediated inhibition of FVa was seen both in the presence and absence of protein S, but in particular for the Arg306 sites, it was more pronounced in the presence of protein S. Thus, prothrombin inhibition of APC inactivation of FVa appears to be due to both impaired APC function and decreased APC cofactor function of protein S. In conclusion, FVa, being part of the prothrombinase complex, is protected from APC by both FXa and prothrombin. Release of products of prothrombin activation from the prothrombinase complex would alleviate the protection, allowing APC-mediated inactivation of FVa.  相似文献   

18.
In the present paper the influence of β2-glycoprotein-I, also known as apolipoprotein H, upon the prothrombinase activity of platelets and phospholipid vesicles was investigated. The results can be summarized as follows. 1. The prothrombinase activity of resting, non-activated platelets, lysed platelets and vesicles composed of phosphatidylserine and phosphatidylcholine at different molar ratios is inhibited by β2-glycoprotein-I in a dose-dependent manner. The concentration of glycoprotein which produces marked inhibition is within the physiological plasma concentration range of β2-glycoprotein-I. 2. The time dependence of this inhibition is a relatively slow process, which is not fully expressed before 1 h or incubation. 3. The effect of the glycoprotein is not due to a direct interaction with the components of the prothrombinase complex, i.e. factors Xa, Va, Ca2+ or prothrombin, nor is the inhibitory action abolished by increasing concentrations of coagulation factors Xa and Va. This suggests that β2-glycoprotein-I causes a reduction of the prothrombinase binding sites of these coagulation factors to platelets or phospholipid vesicles. 4. The prothrombinase activity of platelets stimulated with ionophore A23187 or with collagen plus thrombin is also inhibited by β2-glycoprotein-I in a manner similar to that oberved for phospholipid vesicles or for lysed platelets. These findings suggest a regulatory role for β2-glycoprotein-I in the pathway of blood coagulation.  相似文献   

19.
Serine 525 of human prothrombin was mutated to cysteine and covalently labeled with fluorescein to make II(S525C)-fluorescein. Kinetics of cleavage of this derivative by prothrombinase are identical to those of wild-type prothrombin. Cleavage is coincident with a 50% increase in fluorescence intensity and the product is catalytically inactive. Thus, it allows convenient monitoring of prothrombin activation without generating active thrombin. The kinetics of inhibition of factor Xa (FXa) by antithrombin (AT) and AT-heparin were measured by monitoring activation of II(S525C)-fluorescein and the hydrolysis of the chromogenic substrate S2222 in the presence of AT. With S2222 as the substrate the rate constant for inhibition of FXa, Ca(2+), and unilamellar vesicles of phosphatidylcholine and phosphatidylserine (75:25) (PCPS) vesicles by AT was 3.51 x 10(3) m(-1) s(-1); when factor Va (FVa) was included the rate constant was 1.55 x 10(3) m(-1) s(-1). In the absence of FVa, II(S525C)-fluorescein had no effect on inhibition. When II(S525C)-fluorescein was the substrate, however, FVa at saturating concentrations profoundly protected FXa from inhibition by AT, increasing the half-life from 3 min with FXa, Ca(2+), PCPS, and II(S525C)-fluorescein, to greater than 69 min when FVa was included. Thus, both FVa and prothrombin are necessary for this level of protection. In the absence of prothrombin, FVa decreased the second order rate constant for inhibition by the AT-heparin complex from 1.58 x 10(7) m(-1) s(-1), for FXa, Ca(2+), and PCPS, to 7.72 x 10(6) m(-1) s(-1). II(S525C)-fluorescein and factor Va together reduced the rate constant to less than 1% of that for FXa, Ca(2+), and PCPS. At a heparin concentration of 0.2 unit/ml, this corresponds to a half-life increase from 1 s to 136 s.  相似文献   

20.
Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k 2 = 21±1 s−1) was much higher than the HNE deacylation step (k 3 = 0.57±0.05 s−1). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k 1 2.4-fold and reducing k −1 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k 2 value, whereas the k 3 value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号