首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In vivo and in vitro luteinization were investigated in the porcine ovary, with emphasis on expression of steroidogenic acute regulatory protein (StAR). StAR mRNA and protein as well as cytochrome P450 side-chain cleavage mRNA (P450scc) increased during the luteal phase in the corpus luteum (CL) and were absent in regressed CL. Cytochrome P450 aromatase mRNA (P450arom) was not detectable at any time in CL. In vitro luteinization of granulosa cells occurred over 96 h in culture, during which P450arom mRNA was present at 1 h after cell isolation but not detectable at 6 h; and P450scc and StAR mRNAs were first detectable at 6 h and 48 h, respectively. Incubation of cultures with insulin-like growth factor I (IGF-I, 10 ng/ml), dibutyryl cAMP (cAMP, 300 microM), or their combination, induced measurable StAR mRNA at 24 h (p < 0.05), increased progesterone accumulation at 48 h, and elevated both StAR and P450scc expression through 96 h. Incubation of luteinized granulosa cells with epidermal growth factor (EGF, 10 nM) changed their phenotype from epithelioid to fibroblastic, eliminated steady-state StAR expression, and interfered with cAMP induction of StAR mRNA and progesterone accumulation. EGF had little apparent effect on P450scc mRNA abundance. It is concluded that StAR expression characterizes luteinization, and early luteinization is induced by cAMP and IGF-I in vitro. Further, EGF induces a morphological and functional phenotype that appears similar to an earlier stage of granulosa cell function.  相似文献   

3.
Hippocampal neurons are capable of synthesizing estradiol de novo. Estradiol synthesis can be suppressed by aromatase inhibitors and by knock-down of steroid acute regulatory protein (StAR), whereas elevated levels of substrates of steroidogenesis enhance estradiol synthesis. In rat hippocampal cultures, the expression of estrogen receptors (ERs) and synaptic proteins, as well as synapse density, correlated positively with aromatase activity, regardless of whether the cultures originated from males or females. All effects induced by the inhibition of aromatase activity were rescued by application of estradiol to the cultures. In vivo, however, systemic application of letrozole, an aromatase inhibitor, induced synapse loss in female rats, but not in males. Furthermore, in the female hippocampus, density of spines and spine synapses varied with the estrus cycle. In addressing this in vivo-in vitro discrepancy, we found that gonadotropin-releasing hormone (GnRH) regulated estradiol synthesis via an aromatase-mediated mechanism and consistently regulated spine synapse density and the expression of synaptic proteins. Along these lines, GnRH receptor density was higher in the hippocampus than in the cortex and hypothalamus, and estrus cyclicity of spinogenesis was found in the hippocampus, but not in the cortex. Since GnRH receptor expression also varies with the estrus cycle, the sexual dimorphism in estrogen-regulated spine synapse density in the hippocampus very likely results from differences in the GnRH responsiveness of the male and the female hippocampus. This article is part of a Special Issue entitled 'Neurosteroids'.  相似文献   

4.

Background

Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined.

Methodology/Principal Findings

Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs.

Conclusions/Significance

Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity.  相似文献   

5.
The nephrotic syndrome is a renal disease characterized by proteinuria, hypoproteinemia, edema and hyperlipidemia. It has been reported that female nephrotic rats are characterized by loss of the oestrus cycle, follicle atresia, low gonadotropin and steroid concentrations; particularly, undetectable estradiol levels. Therefore, to determine the mechanisms involved in the ovarian steroidogenesis impairment, in this present study we evaluated the ovarian expression of the essential steroidogenesis components: cytochrome P450 side cholesterol chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR). The experiments were conducted in the rat experimental model of nephrosis induced by puromycin aminonucleoside (PAN) and in control groups. The evaluation of the expression of P450scc and StAR mRNA were performed during the acute phase of nephrosis as well as after the exogenous administration of 1 or 4 doses of human chorionic gonadotrophin (hCG), or a daily dose of FSH or FSH+hCG for 10 days. In addition, serum hormone concentrations, intra-ovarian steroid content, and the reproductive capacity were determined. The results revealed a decreased expression of mRNA of P450scc enzyme and StAR during nephrosis, and eventhough they increased after gonadotropins treatment, they did not conduce to a normal cycling rat period or fertility recovery. This study demonstrates that the mechanism by which ovarian steroid biosynthesis is altered during acute nephrosis involves damage at the P450scc and StAR mRNA synthesis and processing.  相似文献   

6.
We have previously established the presence of a functional bone morphogenetic protein (BMP) system in the ovary by demonstrating the expression of BMP ligands and receptors as well as novel cellular functions. Specifically, BMP-4 and BMP-7 are expressed in theca cells, and their receptors by granulosa cells. These BMPs enhanced and attenuated the stimulatory action of FSH on estradiol and progesterone production, respectively. To investigate the underlying mechanism of the differential regulation, we analyzed mRNA levels for key regulators in the steroid biosynthetic pathways by RNase protection assay. BMP-7 enhanced P450 aromatase (P450(arom)) but suppressed steroidogenic acute regulatory protein (StAR) mRNAs induced by FSH, whereas mRNAs encoding further-downstream steroidogenic enzymes, including P450 side-chain cleavage enzyme and 3beta-hydroxysteroid dehydrogenase, were not significantly altered. These findings suggest that BMP-7 stimulation and inhibition of P450(arom) and StAR mRNA expression, respectively, may play a role in the mechanisms underlying the differential regulation of estradiol and progesterone production. To establish the physiological relevance of BMP functions, we investigated the in vivo effects of injections of recombinant BMP-7 into the ovarian bursa of rats. Ovaries treated with BMP-7 had decreased numbers of primordial follicles, yet had increased numbers of primary, preantral, and antral follicles, suggesting that BMP-7 may act to facilitate the transition of follicles from the primordial stage to the pool of primary, preantral, and antral follicles. In this regard, we have also found that BMP-7 caused an increase in DNA synthesis and proliferation of granulosa cells from small antral follicles in vitro. In contrast to the stimulatory activity, BMP-7 exhibited pronounced inhibitory effects on ovulation rate and serum progesterone levels. These findings establish important new biological activities of BMP-7 in the context of ovarian physiology, including folliculogenesis and ovulation.  相似文献   

7.
8.
To determine the molecular basis for changes in aromatase (P450arom) activity in rat ovarian follicles and corpora lutea, seven clones for rat P450arom cDNA have been identified and isolated from a rat granulosa cell λgtll cDNA expression library using a 62 mer deoxyoligonucleotide probe (derived from an amino acid sequence of purified human placental aromatase) and a human placental P450arom cDNA probe. One of the rat P450arom cDNA clones contained an insert 1.2 kb in size. Both the human 1.8 kb cDNA and the rat 1.2 kb cDNA probes hybridized to a single species of P450arom mRNA that was 2.6 kb in size. Northern blot analysis revealed that corpora lutea isolated on day 15 of pregnancy contained high amounts of P450arom mRNA, whereas granulosa cells of antral follicles of hormonally primed, hypophysectomized rats (i.e., those from which mRNA was isolated to construct the cDNA library) contained only low amounts of P450arom mRNA. The lower amounts of P450arom in granulosa cells of preovulatory follicles in the estradiol-follicle-stimulating hormone primed hypophysectomized rats were unexpected because follicles incubated in medium containing testosterone substrate produce more estradiol than do corpora lutea isolated on day 15 of pregnancy and incubated under similar conditions. Additional studies will determine the hormonal events responsible for the elevated amounts and constitutive maintenance of P450arom mRNA and aromatase activity in luteal cells in vivo and in vitro.  相似文献   

9.
We determined 1) whether the previously observed induction of estradiol secretion in bovine granulosa cells cultured in serum-free conditions is associated with an increase in cytochrome P450 aromatase (P450(arom)) mRNA abundance and 2) whether P450(arom) mRNA levels are responsive to FSH in vitro. Granulosa cells from small (2-4-mm) follicles were cultured in serum-free medium. Estradiol secretion increased with time in culture and was correlated with increased P450(arom) mRNA abundance. Progesterone secretion also increased with time in culture, but P450 cholesterol side-chain cleavage (P450(scc)) mRNA abundance did not. FSH stimulated estradiol secretion and P450(arom) mRNA abundance; the effect was quadratic for both estradiol and P450(arom) mRNA. Estradiol secretion and P450(arom) mRNA levels were correlated. FSH stimulated progesterone secretion and P450(scc) mRNA abundance, although the minimum effective dose of FSH was lower for estradiol (0.1 ng/ml) than for progesterone (10 ng/ml) production. Insulin alone stimulated estradiol secretion and P450(arom) mRNA levels but not progesterone or P450(scc) mRNA abundance. We conclude that this cell culture system maintained both estradiol secretion and P450(arom) mRNA abundance responsiveness to FSH and insulin, whereas P450(scc) mRNA abundance and progesterone secretion were responsive to FSH but not insulin.  相似文献   

10.
Ovarian oestrogens have been demonstrated to influence neurogenesis in the dentate gyrus. As considerable amounts of oestrogens are synthesized in hippocampal neurones, we focused on the role of hippocampus-derived estradiol on proliferation and apoptosis of granule cells in vitro. We used hippocampal dispersion cultures, which allowed for cultivation of the cells under steroid- and serum-free conditions and monitoring of oestrogen synthesis. To address the influence of hippocampus-derived estradiol on neurogenesis, we inhibited oestrogen synthesis by treatment of hippocampal cell cultures with letrozole, a specific aromatase inhibitor. Alternatively, we used siRNA against steroidogenic acute regulatory protein (StAR). The number of proliferative cells decreased whereas the number of apoptotic cells increased dose-dependently, in response to reduced estradiol release into the medium after treatment with letrozole. This also held true for siRNA against StAR transfected cell cultures. Application of estradiol to the medium had no effect on proliferation and apoptosis whereas the anti-proliferative and pro-apoptotic effects of StAR knock-down and letrozole treatment were restored by treatment of the cultures with estradiol. Our findings suggest that neurogenesis and apoptosis in the hippocampus require a defined range of estradiol concentrations that is physiologically provided by hippocampal cells but not by gonads.  相似文献   

11.
12.
《Reproductive biology》2023,23(2):100749
The present study was planned to investigate the anti-spermatogenic and anti-steroidogenic effects of Clomiphene Citrate (CC) an anti-estrogen and Mifepristone (MT) an anti-progesterone in the testis of male rats. Following the oral administration of 1.0 mg and 5.0 mg/kg b.w/day of each for the duration of 30 and 60 days, quantitation of spermatogenesis, RIA for serum and intra-testicular testosterone levels, western blotting and RT-PCR for expression of StAR, 3β-HSD and P450arom enzymes in the testis was done. Clomiphene Citrate at 5.0 mg/kg b.w/day for 60 days significantly reduced testosterone (T) levels however the effect was not significant with the lower doses. Reproductive parameters in animals treated by Mifepristone remained mostly unaffected, however, a significant decline in testosterone levels and altered expression of selected genes was observed in 5.0 mg for the 30d treatment group. Clomiphene Citrate at higher doses affected the weights of the testis and secondary sex organs. Seminiferous tubules revealed hypo-spermatogenesis with a significant decrease in the number of maturing germ cells and a reduction in tubular diameter. Attenuation in serum testosterone was associated with the downregulation of expression in StAR, 3β-HSD, and P450arom mRNA and protein levels in the testis even after 30 d of CC administration. The results indicate that the anti-estrogen (Clomiphene Citrate) but not anti-progesterone (Mifepristone) induces hypo-spermatogenesis in rats which are associated with a downregulation of expression of two of the steroidogenic enzymes, 3β-HSD and P450arom mRNA and StAR protein.  相似文献   

13.
Compelling evidence has now demonstrated direct biological actions of sex steroids at the cerebellum. Likewise, the expression of key steroidogenic factors, such as the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), and aromatase, at this neural site has been reported. Little is known, however, about the regulation of their genes in the cerebellum. Assessment of StAR, P450scc, and aromatase mRNAs in the cerebellum of male and female rats revealed that the expression of these genes is developmentally regulated, with the highest levels at early postnatal ages in both sexes and with significantly higher mRNA levels in postnatal males. Expression of these genes in the female remained unaltered after perinatal androgenization and along the estrous cycle. In contrast, damage of cerebellar afferent neurons of the inferior olivary nucleus evoked a significant increase in StAR, P450scc, and aromatase mRNA levels at this site, as well as a transient elevation in StAR mRNA at the cerebellum. Finally, enhancement of cAMP levels in cultured cerebellar neurons induced a significant increase in StAR and aromatase mRNA levels. In summary, we present herein novel evidence for the developmentally regulated and partially sexually dimorphic pattern of expression of StAR, P450scc, and aromatase genes in the rat cerebellum. These observations, together with the finding that the mRNA levels of these steroidogenic molecules are sensitive to injury and are regulated by intracellular cAMP, strongly suggest that local steroidogenesis is likely to play an important role during development and adaptation to neurodegenerative processes in the olivocerebellar system.  相似文献   

14.
15.
Regulation by PRL of aromatase (P450arom) mRNA and protein and estradiol (E) biosynthesis was examined in granulosa cells during early stages of luteinization in vitro and in vivo. PRL caused a dose-dependent (10-1000 ng/ml) decrease in P450arom mRNA and E biosynthesis (greater than 99%) in luteinized rat granulosa cells in vitro, even when the cells were cultured in the presence of insulin and hydrocortisone (hormones known to synergize with PRL to induce proteins in mammary tissue) or in the presence of forskolin (a nonhormonal stimulator of cAMP). PRL also prevented the marked increases in aromatase mRNA and E biosynthesis stimulated by FSH and forskolin in nonluteinized preovulatory granulosa cells in culture. These effects of PRL on granulosa cells in culture were specific for aromatase and were not observed for other proteins, such as cholesterol side-chain cleavage cytochrome P450 (P450scc) and alpha 2-macroglobulin. PRL also decreased P450arom mRNA and protein during the early stages of luteinization in vivo. PRL administered to rats beginning day 1 postovulation to mimic hormone release during pseudopregnancy reduced the progressive increase in P450arom mRNA occurring in corpora lutea on days 3-4 in ovulated rats not treated with PRL. CB 154, a dopamine agonist that inhibits pituitary release of PRL, caused P450arom mRNA and protein to decrease 50% if given to pregnant rats on days 8-10 of gestation, but increased P450arom mRNA and protein if given to pregnant rats on days 10-12 of gestation. These diverse effects of PRL in pregnancy suggest that placental factors may modify the response of luteal cells to PRL during gestation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The ovary of the brushtail possum (Trichosurus vulpecula) secretes steroids; however, little is known about the identity of the steroidogenic cells in the ovary. The aim of the present study was to determine the identity of the ovarian cell types expressing mRNAs encoding proteins important for steroidogenesis and determine at what stage of follicular development they are expressed. The genes examined were those for steroidogenic factor-1 (SF-1), steroidogenic acute regulatory protein (StAR), cytochrome p450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase/Delta5,Delta4 isomerase (3betaHSD), cytochrome p45017alphahydroxylase (p45017alphaOH), and p450 aromatase (p450arom). None of the genes examined were expressed in oocytes at any stage of follicular development. SF-1 was expressed in granulosa cells from the type 2 or the primary stage of development and thereafter to the preovulatory stage. In addition, the theca interna of small and medium-size antral but not preovulatory follicles and the interstitial glands and corpora lutea expressed SF-1 mRNA. Granulosa cells of preantral and small to medium-size antral follicles were not capable of synthesizing steroids from cholesterol because they did not contain p450scc mRNA. However, granulosa cells of many of the small to medium-size antral follicles expressed p450arom and 3betaHSD mRNA. The interstitial glands, theca interna, and corpus luteum expressed StAR, p450scc, 3betaHSD, and p45017alphaOH mRNA, suggesting that these tissues are capable of synthesizing progestins and androgens. The corpus luteum expressed p450arom, indicating that this tissue also has the potential to secrete estrogens in this species.  相似文献   

18.

Background

Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC) synthase, cytochrome P450(c21).

Methodology/Principal Findings

The expression of P450(c21) was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG) was demonstrated by metabolism analysis of 3H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21), P450(2D4), P450(11β1) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT) and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM) doses of CORT for 1 h.

Conclusions/Significance

These results imply the complete pathway of corticosteroid synthesis of ‘pregnenolone →PROG→DOC→CORT’ in the hippocampal neurons. Both P450(c21) and P450(2D4) can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.  相似文献   

19.
A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.  相似文献   

20.
Steroidogenesis is a major function of the developing follicle. However, little is known about the stage of onset of steroid regulatory proteins during follicular development in sheep. In this study, several steroidogenic enzymes were studied by immunohistochemistry and/or in situ hybridization; cytochrome P450 side chain cleavage (P450(scc)), cytochrome P450 17alpha-hydroxylase (17alphaOH), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), cytochrome P450 aromatase (P450(arom)), steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR), and LH receptor (LH-R). To define the stages of follicular growth, ovarian maps were drawn from serial sections of ovine ovaries, and follicles were located and classified at specific stages of growth based on morphological criteria. In this way, the precise onset of gene expression with respect to stages of follicular growth for all these proteins could be observed. The key findings were that ovine oocytes express StAR mRNA at all stages of follicular development and that granulosa cells in follicle types 1-3 express 3beta-HSD and SF-1. Furthermore, the onset of expression in theca cells of StAR, P450(scc), 17alphaOH, 3beta-HSD, and LH-R occurred in large type 4 follicles just before antrum formation. This finding suggests that although the theca interna forms from the type 2 stage, it does not become steroidogenically active until later in development. These studies also confirm that granulosa cells of large type 5 follicles express SF-1, StAR, P450(scc), LH-R, and P450(arom) genes. These findings raise new questions regarding the roles of steroidogenic regulatory factors in early follicular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号