首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow mesenchymal stem cells (MSCs) have multi-differentiation capability. Their endothelial cell (EC) oriented differentiation is the key to vasculogenesis, in which both mechanical and chemical stimulations play important roles. Most previous studies reported individual effects of VEGF or fluid shear stress (SS), when MSCs were subjected to shear stress of 10–15 dyn/cm2 over 24 hr. In this paper, we investigated responses of MSCs from young Sprague Dawley rats to shear stress, VEGF and the combination of the two stimuli. Our study showed that the combined stimulation of shear stress and VEGF resulted in more profound EC oriented differentiation of MSCs in comparison to any individual stimulation. Furthermore, we subjected MSCs to prolonged period of fluid shear stimulation, i.e. 48 hr rather than 24 hr, and increased the magnitude of the shear stress from 10 dyn/cm2 to 15, 20 and 25 dyn/cm2. We found that without VEGF, the endothelium oriented differentiation of MSCs that was seen following 24 hr of shear stimulation was largely abolished if we extended the shear stimulation to 48 hr. A similar sharp decrease in MSC differentiation was also observed when the magnitude of the shear stress was increased from 10–15 dyn/cm2 to 20–25 dyn/cm2 in 24 hr shear stimulation studies. However, with combined VEGF and fluid shear stimulation, most of the endothelial differentiation was retained following an extended period, i.e. at 48 hr, of shear stimulation. Our study demonstrates that chemical and mechanical stimulations work together in determining MSC differentiation dynamics.  相似文献   

2.
Mechanical forces induced by interstitial fluid flow in and surrounding tissues and by blood/lymphatic flow in vessels may modulate cancer cell invasion and metastasis and anticancer drug delivery. Our previous study demonstrated that laminar flow-induced shear stress induces G2/M arrest in tumor cells. However, whether shear stress modulates final cell fate remains unclear. In this study, we investigated the role of flow-induced shear stress in modulating the survival of four human tumor cell lines, i.e., Hep3B hepatocarcinoma cells, MG63 osteosarcoma cells, SCC25 oral squamous carcinoma cells, and A549 carcinomic alveolar basal epithelial cells. Laminar shear stress (LSS) ranging from 0.5 to 12 dyn/cm2 induced death of these four tumor cell lines. In contrast to LSS at 0.5 dyn/cm2, oscillatory shear stress (OSS) at 0.5 ± 4 dyn/cm2 cannot induce cancer cell death. Both LSS and OSS had no effect on human normal hepatocyte, lung epithelial, and endothelial cells. Application of LSS to these four cell lines increased the percentage of cells stained positively for annexin V–FITC, with up-regulations of cleaved caspase-8, -9, and -3, and PARP. In addition, LSS also induced Hep3B cell autophagy, as detected by acidic vesicular organelle formation, LC3B transformation, and p62/SQSTM1 degradation. By transfecting with small interfering RNA, we found that the shear-induced apoptosis and autophagy are mediated by bone morphogenetic protein receptor type (BMPR)-IB, BMPR-specific Smad1 and Smad5, and p38 mitogen-activated protein kinase in Hep3B cells. Our findings provide insights into the molecular mechanisms by which shear stress induces apoptosis and autophagy in tumor cells.  相似文献   

3.
AimsTo determine how statin drugs (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) affect endothelial cell (EC) shape and F-actin cytoskeleton arrangement in the presence of physiologically relevant wall shear stress (WSS) of 12.5 dyn/cm2.Main methodsHuman abdominal aortic endothelial cells (HAAECs) were cultured to a confluent monolayer within three dimensional tissue culture models and presheared for 6 h at 12.5 dyn/cm2 within a continuous flow loop. Statins were added to the perfusion media and the perfusion was continued for a further 24 h. ECs were then analyzed for morphology and F-actin cytoskeleton arrangement using light microscopy and laser scanning confocal microscopy.Key findingsECs became rounded with a significantly higher shape index with the addition of 10 μM simvastatin under both static and flow conditions. F-actin cytoskeleton structure was disorganized and fragmented with statin treatment under static and flow conditions. Neither of these findings were observed with the addition of both simvastatin and 200 μM mevalonate, confirming regulation through the cholesterol biosynthesis pathway.SignificanceEC morphology and F-actin cytoskeleton arrangement are regulated through the cholesterol biosynthesis pathway and are therefore impacted by statin treatment. ECs treated with statins became rounded, which is usually associated with unhealthy cells in regions of the vasculature prone to developing atherosclerotic plaques.  相似文献   

4.
Nitric oxide (NO) produced by the endothelium is involved in the regulation of vascular tone. Decreased NO production or availability has been linked to endothelial dysfunction in hypercholesterolemia and hypertension. Shear stress-induced NO release is a well-established phenomenon, yet the cellular mechanisms of this response are not completely understood. Experimental limitations have hindered direct, real-time measurements of NO under flow conditions. We have overcome these challenges with a new design for a parallel-plate flow chamber. The chamber consists of two compartments, separated by a Transwell® membrane, which isolates a NO recording electrode located in the upper compartment from flow effects. Endothelial cells are grown on the bottom of the membrane, which is inserted into the chamber flush with the upper plate. We demonstrate for the first time direct real-time NO measurements from endothelial cells with controlled variations in shear stress. Step changes in shear stress from 0.1 dyn/cm2 to 6, 10, or 20 dyn/cm2 elicited a transient decrease in NO followed by an increase to a new steady state. An analysis of NO transport suggests that the initial decrease is due to the increased removal rate by convection as flow increases. Furthermore, the rate at which the NO concentration approaches the new steady state is related to the time-dependent cellular response rather than transport limitations of the measurement configuration. Our design offers a method for studying the kinetics of the signaling mechanisms linking NO production with shear stress as well as pathological conditions involving changes in NO production or availability.  相似文献   

5.
Optimization of intravascular shear stress assessment in vivo   总被引:1,自引:0,他引:1  
The advent of microelectromechanical systems (MEMS) sensors has enabled real-time wall shear stress (WSS) measurements with high spatial and temporal resolution in a 3-D bifurcation model. To optimize intravascular shear stress assessment, we evaluated the feasibility of catheter/coaxial wire-based MEMS sensors in the abdominal aorta of the New Zealand white (NZW) rabbits. Theoretical and computational fluid dynamics (CFD) analyses were performed. Fluoroscope and angiogram provided the geometry of aorta, and the Doppler ultrasound system provided the pulsatile flow velocity for the boundary conditions. The physical parameters governing the shear stress assessment in NZW rabbits included (1) the position and distance from which the MEMS sensors were mounted to the terminal end of coaxial wire or the entrance length, (Le), (2) diameter ratios of aorta to the coaxial wire (Daorta /Dcoaxial wire=1.5–9.5), and (3) the range of Reynolds numbers (116–1550). At an aortic diameter of 2.4 mm and a maximum Reynolds number of 212 (a mean Reynolds number of 64.2), the time-averaged shear stress (τave) was computed to be 10.06 dyn cm?2 with a systolic peak at 33.18 dyn cm?2. In the presence of a coaxial wire (Daorta /Dcoaxial wire=6 and Le=1.18 cm), the τave value increased to 15.54 dyn cm?2 with a systolic peak at 51.25 dyn cm?2. Real-time intravascular shear stress assessment by the MEMS sensor revealed an τave value of 11.92 dyn cm?2 with a systolic peak at 47.04 dyn cm?2. The difference between CFD and experimental τave was 18.5%. These findings provided important insights into packaging the MEMS sensors to optimize in vivo shear stress assessment.  相似文献   

6.
Microbubble facilitated ultrasound (US) application can enhance intracellular delivery of drugs and genes in endothelial cells cultured in static condition by transiently disrupting the cell membrane, or sonoporation. However, endothelial cells in vivo that are constantly exposed to blood flow may exhibit different sonoporation characteristics. This study investigates the effects of shear stress cultivation on sonoporation of endothelial cells in terms of membrane disruption and changes in the intracellular calcium concentration ([Ca2+]i). Sonoporation experiments were conducted using murine brain microvascular endothelial (bEnd.3) cells and human umbilical vein endothelial cells (HUVECs) cultured under static or shear stress (5 dyne/cm2 for 5 days) condition in a microchannel environment. The cells were exposed to a short US tone burst (1.25 MHz, 8 μs duration, 0.24 MPa) in the presence of DefinityTM microbubbles to facilitate sonoporation. Membrane disruption was assessed by propidium iodide (PI) and changes in [Ca2+]i measured by fura-2AM. Results from this study show that shear stress cultivation significantly reduced the impact of ultrasound-driven microbubbles activities on endothelial cells. Cells cultured under shear stress condition exhibited much lower percentage with membrane disruption and changes in [Ca2+]i compared to statically cultured cells. The maximum increases of PI uptake and [Ca2+]i were also significantly lower in the shear stress cultured cells. In addition, the extent of [Ca2+]i waves in shear cultured HUVECs was reduced compared to the statically cultured cells.  相似文献   

7.
Laminar shear stress (LSS) due to blood flow contributes to the maintenance of endothelial health by multiple mechanisms including promotion of wound healing. The present study examined the hypothesis that the induction of water channel aquaporin 1 (AQP1) expression by LSS might be functionally associated with endothelial wound healing. When human umbilical vein endothelial cells were exposed to LSS at 12 dyn cm?2 for 24 h, significant increases in AQP1 expression were observed at the mRNA and protein levels as compared with static control. In the in vitro scratch wound healing assay, LSS treatments before and after wound creation enhanced endothelial wound healing and this effect was significantly attenuated by selective suppression of AQP1 expression using small interfering RNA. Ectopic expression of AQP1 enhanced wound healing in the absence of LSS. This study demonstrated that LSS stimulates the endothelial expression of AQP1 that plays a role in wound healing.  相似文献   

8.
Fibroblast growth factor-2 (FGF2) is produced and released by endothelial cells and binds to heparan sulfate proteoglycans in the endothelial basement membrane (BM), an important FGF2 storage reservoir. Experimental and computational models of FGF2 binding kinetics to both cells and BM under static conditions are well established in the literature but remain largely unexplored under flow. We now examine BM-FGF2 binding kinetics in fluid flow conditions. We hypothesized that FGF2 binding to the endothelial BM would decrease as fluid shear stress increased. To investigate this, BM-FGF2 equilibrium, associative, and dissociative bindings were measured at various shear stresses. Surprisingly, FGF2 binding increased up to a physiological arterial shear stress of 25 dynes/cm2, after which it decreased to a level similar to the 1 dyne/cm2 condition. Both BM-FGF2 dissociation and BM binding site availability increased with flow, while association remained constant. This suggests that force-dependent FGF2 equilibrium binding varies with shear stress due to a combination of an increase in binding site availability and FGF2 dissociation with flow. This improved understanding of BM-FGF2 binding with flow enriches current knowledge of FGF2 binding kinetics under physiologic conditions, which may contribute to improved growth factor therapy development.  相似文献   

9.
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases.  相似文献   

10.
Atherothrombosis can induce acute myocardial infarction and stroke by progressive stenosis of a blood vessel lumen to full occlusion. Since thrombus formation and embolization may be shear-dependent, we quantify the magnitude of shear rates in idealized severely stenotic coronary arteries (≥75% by diameter) using computational fluid dynamics to characterize the shear environment that may exist during atherothrombosis. Maximum shear rates in severe short stenoses were found to exceed 250,000 s?1 (9500 dynes/cm2) and can reach a peak value of 425,000 s?1 for a 98% stenosis. These high shear rates exceed typical shear used for in vitro blood flow experiments by an order of magnitude, indicating the need to examine thrombosis at very high shear rates. Pulsatility and stenosis eccentricity were found to have minor effects on the maximum wall shear rates in severe stenoses. In contrast, increases in the stenosis length reduced the maximum shear to 107,000 s?1 (98% stenosis), while surface roughness could increase focal wall shear rates to a value reaching 610,000 s?1 (90% stenosis). The “shear histories” of circulating platelets in these stenoses are far below reported activation thresholds. Platelets may be required to form bonds in 5 μs and resist shear forces reaching 8000 pN per platelet. Arterial thrombosis occurs in the face of pathological high shear stress, creating rapid and strong bonds without prior activation of circulating platelets.  相似文献   

11.
It is well-recognized that blood flow at branches and bends of arteries generates disturbed shear stress, which plays a crucial in driving atherosclerosis. Flow-generated fluid shear stress (FSS), as one of the key hemodynamic factors, is appreciated for its critical involvement in regulating angiogenesis to facilitate wound healing and tissue repair. Endothelial cells can directly sense FSS but the mechanobiological mechanism by which they decode different patterns of FSS to trigger angiogenesis remains unclear. In the current study, laminar shear stress (LSS, 15 dyn/cm2) was employed to mimic physiological blood flow, while disturbed shear stress (DSS, ranging from 0.5 ± 4 dyn/cm2) was applied to simulate pathological conditions. The aim was to investigate how these distinct types of blood flow regulated endothelial angiogenesis. Initially, we observed that DSS impaired angiogenesis and downregulated endogenous vascular endothelial growth factor B (VEGFB) expression compared to LSS. We further found that the changes in membrane protein, migration and invasion enhancer 1 (MIEN1) play a role in regulating ERK/MAPK signaling, thereby contributing to endothelial angiogenesis in response to FSS. We also showed the involvement of MIEN1-directed cytoskeleton organization. These findings suggest the significance of shear stress in endothelial angiogenesis, thereby enhancing our understanding of the alterations in angiogenesis that occur during the transition from physiological to pathological blood flow.  相似文献   

12.
Primary cilium has emerged as mechanosensor to subtle flow variations in epithelial cells, but its role in shear stress detection remains controversial. To probe the function of this non-motile organelle in shear stress detection by cells, we compared calcium signalling responses induced by shear stress in ciliated and unciliated MDCK cells. Cytosolic free Ca2+ ([Ca2+]i) was measured using Fura-PE3 video imaging fluorescence microscopy in response to shear stress due to laminar flow (385 μl s?1). Our results show that both unciliated and ciliated MDCK cells are shear stress sensitive via ATP release and autocrine feedback through purinergic receptors. However, purinergic calcium signals differed in response intensity and receptor subtypes. In unciliated cells, shear stress-induced elevation in [Ca2+]i was predominantly mediated through P2X receptors (P2XR). In contrast, calcium mobilization in ciliated MDCK cells resulted from P2YRs and store-operated Ca2+-permeable channels besides P2XRs. These findings lend support to the hypothesis that ATP release in response to shear stress is independent of the primary cilium and that transduction of mechanical strain into a specific biochemical responses stems on the mobilization of different sets of purinergic receptors.  相似文献   

13.
The key mechanism responsible formaintaining cell volume homeostasis is activation ofvolume-regulated anion current (VRAC). The role of hemodynamicshear stress in the regulation of VRAC in bovine aortic endothelialcells was investigated. We showed that acute changes in shear stresshave a biphasic effect on the development of VRAC. A shear stress stepfrom a background flow (0.1 dyn/cm2) to 1 dyn/cm2 enhanced VRAC activation induced by an osmoticchallenge. Flow alone, in the absence of osmotic stress, did not induceVRAC activation. Increasing the shear stress to 3 dyn/cm2,however, resulted in only a transient increase of VRAC activity followed by an inhibitory phase during which VRAC was gradually suppressed. When shear stress was increased further (5-10dyn/cm2), the current was immediately strongly suppressed.Suppression of VRAC was observed both in cells challenged osmoticallyand in cells that developed spontaneous VRAC under isotonic conditions. Our findings suggest that shear stress is an important factor inregulating the ability of vascular endothelial cells to maintain volume homeostasis.

  相似文献   

14.
We have previously demonstrated the vasorelaxant activity of 1,3,4-oxadiazole derivative (NOX-1) through L-type Ca2+ channel blockage. In the present study, we investigated whether the correction of endothelial dysfunction is dependent on the normalization of high blood pressure levels by 1,3,4-oxadiazole derivative (NOX-1) in deoxycorticosterone acetate (DOCA-salt) and NG-nitro-l-arginine (L-NNA) hypertensive rats. In DOCA-salt and L-NNA hypertensive rats, the mean systolic blood pressure (MSBB) was 185.3 ± 4.7 and 170.2 ± 4.1 mmHg, whereas after administration of NOX-1 to hypertensive rats, MSBB was 127.8 ± 4.5 and 120.2 ± 5.1 mmHg, respectively. To study the endothelial dysfunction, concentration–response curves of norepinephrine (NE) and acetylcholine (Ach) were constructed in rat aortic rings isolated from normotensive, hypertensive (DOCA and L-NNA) and NOX-1 treated rats. NE-induced contractions and Ach-induced relaxations were significantly (p < 0.05) decreased and increased, respectively in the aorta of NOX-1 treated rats. Vasorelaxant activity of NOX-1 was not abolished by pretreatment of aortic rings with L-NNA, 1H-[1,2,4] oxadiazolo [4,3-A] quinoxalin-1-one (ODQ), indomethacin or glibenclamide. The results suggest that the endothelial dysfunction can be corrected by the L-type Ca2+ channel blocker with endothelium-independent action and that is dependent on the normalization of high blood pressure levels. The antihypertensive and vasorelaxant effects of NOX-1 are mainly endothelial-independent and it can be used to treat hypertension, a state associated with endothelial dysfunction.  相似文献   

15.
Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12 dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1 nM/min and 15 μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced ?NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased ?NO generation and protection of endothelial function.  相似文献   

16.
Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm2) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation.  相似文献   

17.
18.
Sulfur powder and sulfur dioxide (SO2) often floated in air, produced acid rain and algal blooms, and could cause diseases. Bamboo charcoal could have adsorption and filtration properties. In order to figure out the optimal adsorption condition and the intrinsic change of the bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. Fe2(SO4)3’s, Na2SO4’s, Na2S2O8’s, S’s, and Na2SO3’s optimal adsorption condition was the concentration of 19 g/1000 g and stir time of 20 min, 21 g/1000 g and stir time of 60 min, 7 g/1000 g and stir time of 120 min, 11 g/1000 g and stir time of 120 min, 21 g/1000 g and stir time of 60 min, respectively. FT-IR spectra showed that for FT-IR spectra of Fe2(SO4)3, the transmissivity of the peaks at 3435 cm−1 and 2925 cm−1 achieved the maximum for 60 min and the concentration was 19 g/1000 g, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 60 min and the concentration was 7 g/1000 g. For FT-IR spectra of Na2SO4, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 20 min and the concentration was 13 g/1000 g. For FT-IR spectra of Na2S2O8, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 19 g/1000 g. For FT-IR spectra of S, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 20 min and the concentration was 11 g/1000 g, 17 g/1000 g and 21 g/1000 g. For FT-IR spectra of Na2SO3, the transmissivity of the peaks at 3435 cm−1 achieved the maximum for 120 min and the concentration was 5 g/1000 g, the transmissivity of the peaks at 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 11 g/1000 g. In these states, the number of the transmissivity of the maximum peaks is the largest.  相似文献   

19.
Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5) may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people’s health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO4)3 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of SS stretch, H2O stretch, OH stretch, CO stretch or CC stretch, and NO2 stretch at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1, respectively. For Na2SO3, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm−1, 3740 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Fe2(SO4)3, the peaks at 3850 cm−1, 3740 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 120 min. For S, the peaks at 3850 cm−1 and 3740 cm−1 achieved the maximum at 40 min, the peaks at 1630 cm−1 and 1530 cm−1 achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.  相似文献   

20.
The impact of flow velocity on initial ciliate colonization dynamics on surfaces were studied in the third order Ilm stream (Thuringia, Germany) at a slow flowing site (0.09 m s?1) and two faster flowing sites (0.31 m s?1) and in flow channels at 0.05, 0.4, and 0.8 m s?1. At the slow flowing stream site, surfaces were rapidly colonized by ciliates with up to 60 cells cm?2 after 24 h. In flow channels, the majority of suspended ciliates and inorganic matter accumulated at the surface within 4.5 h at 0.05 m s?1. At 0.4 m s?1 the increase in ciliate abundance in the biofilm was highest between 72 and 168 h at about 3 cells cm?2 h?1. Faster flow velocities were tolerated by vagile flattened ciliates that live in close contact to the surface. Vagile flattened and round filter feeders preferred biofilms at slow flow velocities. Addition of inorganic particles (0, 0.6, and 7.3 mg cm?2) did not affect ciliate abundance in flow channel biofilms, but small ciliate species dominated and number of species was lowest (16 species cm?2) in biofilms at high sediment content. Although different morphotypes dominated the communities at contrasting flow velocities, all functional groups contributed to initial biofilm communities implementing all trophic links within the microbial loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号