首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Metabolic syndrome consists of metabolic abnormality with central obesity, hypertriglyceridemia, insulin resistance and hypertension. Adipose tissue has been known as a primary site of insulin resistance and its adipocyte size may be correlated with the degree of insulin resistance. A designed angiopoietin-1, COMP-Angiopoietin-1 (COMP-Ang1), mitigated high-fat diet-induced insulin resistance in skeletal muscle. In this study, we examined effects of COMP-Ang1 on adipocyte droplet size, vascular endothelial cell density in adipose tissue and metabolic parameters in db/db mice by administering COMP-Ang1 or LacZ (as a control) adenovirus. Administration of COMP-Ang1 decreased fat droplet diameter in epididymal and abdominal visceral adipocyte and visceral fat content in db/db mice. The density of vascular endothelial cell in adipose tissue was increased in db/db mice after treatment with COMP-Ang1. Serum resistin and tumor necrosis factor-α level was lower after treatment with COMP-Ang1 in db/db mice. COMP-Ang1 caused a restoration of fasting glycemic control in db/db mice and decreased serum insulin level and insulin resistance measured by HOMA index. These findings indicate that COMP-Ang1 regulates adipocyte fat droplet diameter, vascular endothelial cell density and metabolic parameters in db/db mice.  相似文献   

2.
During systemic inflammation, recruitment and activation of leukocytes in the pulmonary microcirculation may result in a potentially life-threatening acute lung injury. We elucidated the role of the poly(ADP-ribose) synthetase (PARS), a nucleotide-polymerizing enzyme, in the regulation of leukocyte recruitment within the lung with regard to the localization in the pulmonary microcirculation and in correlation to hemodynamics in the respective vascular segments and expression of intercellular adhesion molecule 1 during endotoxemia. Inhibition of PARS by 3-aminobenzamide reduced the endotoxin-induced leukocyte recruitment within pulmonary arterioles, capillaries, and venules in rabbits as quantified by in vivo fluorescence microscopy. Microhemodynamics and thus shear rates in all pulmonary microvascular segments remained constant. Simultaneously, inhibition of PARS with 3-aminobenzamide suppressed the endotoxin-induced adhesion molecules expression as demonstrated for intercellular adhesion molecule 1 by immunohistochemistry and Western blot analysis. We confirmed this result with the use of PARS knockout mice. The inhibitory effect of 3-aminobenzamide on leukocyte recruitment was associated with a reduction of pulmonary capillary leakage and edema formation. We first provide evidence that PARS activation mediates the leukocyte sequestration in pulmonary microvessels through upregulation of adhesion molecules. As reactive oxygen species released from leukocyte are supposed to cause an upregulation of adhesion molecules we conclude that PARS inhibition contributes to termination of this vicious cycle and inhibits the inflammatory process.  相似文献   

3.
We hypothesized that toxic O2 radicals might be important mediators of endotoxin-induced acute respiratory failure in pigs. As a relatively specific scavenger of .OH, we infused dimethylthiourea (DMTU, 1 g/kg) before endotoxemia. Escherichia coli endotoxin (055-B5) was infused intravenously into anesthetized 10- to 14-wk-old pigs at 5 micrograms/kg the 1st h, followed by 2 micrograms.kg-1.h-1 for 3.5 h. During phase 1 (i.e., 0-2 h) and phase 2 (i.e., 2-4.5 h), endotoxin decreased cardiac index (CI) and increased mean pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), alveolar-arterial O2 gradient (AaDo2), and hematocrit (Hct). Endotoxemia also caused leukopenia and increased the postmortem bronchoalveolar lavage fluid (BALF) albumin concentration and wet weight-to-dry weight ratio of bloodless lung. Dimethylthiourea did not significantly modify the phase 1 response. However, during phase 2, DMTU attenuated the endotoxin-induced decrease in CI and increases in Ppa, PVR, Hct, AaDo2, lung water, and BALF albumin concentration. In separate groups of endotoxin- and DMTU + endotoxin-treated pigs, lung microvascular hydrostatic pressure was increased to approximately 16 Torr (by fluid overload) to assess alveolar-capillary membrane permeability. Under these conditions, DMTU markedly attenuated the endotoxin-induced increase in alveolar-capillary membrane permeability. Under these conditions, DMTU markedly attenuated the endotoxin-induced induced increase in alveolar-capillary membrane permeability. We conclude that .OH (and possibly H2O2) significantly contributes to endotoxin-induced lung injury in anesthetized pigs.  相似文献   

4.
A synthetic 7-mer, HHHRHSF, was recently identified by screening a phage display library for binding to the Tie-2 receptor. A polyethylene-oxide clustered version of this peptide, termed vasculotide (VT), was reported to activate Tie-2 and promote angiogenesis in a mouse model of diabetic ulcer. We hypothesized that VT administration would defend endothelial barrier function against sepsis-associated mediators of permeability, prevent lung vascular leakage arising in endotoxemia, and improve mortality in endotoxemic mice. In confluent human microvascular endothelial cells, VT prevented endotoxin-induced (lipopolysaccharides, LPS O111:B4) gap formation, loss of monolayer resistance, and translocation of labeled albumin. In 8-wk-old male C57Bl6/J mice given a ~70% lethal dose of endotoxin (15 mg/kg ip), VT prevented lung vascular leakage and reversed the attenuation of lung vascular endothelial cadherin induced by endotoxemia. These protective effects of VT were associated with activation of Tie-2 and its downstream mediator, Akt. Echocardiographic studies showed only a nonsignificant trend toward improved myocardial performance associated with VT. Finally, we evaluated survival in this mouse model. Pretreatment with VT improved survival by 41.4% (n = 15/group, P = 0.02) and post-LPS administration of VT improved survival by 33.3% (n = 15/group, P = 0.051). VT-mediated protection from LPS lethality was lost in Tie-2 heterozygous mice, in agreement with VT's proposed receptor specificity. We conclude that this synthetic Tie-2 agonist, completely unrelated to endogenous Tie-2 ligands, is sufficient to activate the receptor and its downstream pathways in vivo and that the Tie-2 receptor may be an important target for therapeutic evaluation in conditions of pathological vascular leakage.  相似文献   

5.
Angiogenesis is considered essential for proper bone regeneration. The purpose of this investigation was to determine if a combined therapy of bone morphogenetic protein-2 (BMP-2) and cartilage oligomeric matrix protein angiopoietin-1 (COMP-Ang1) can potentiate the therapeutic effect of BMP-2 in a rat model of ischemic necrosis of the femoral head (INFH). INFH was surgically induced in the femoral head of rats, and the animals were divided into the following groups: 1) a sham-operated group (sham group), 2) a bovine serum albumin-injected group (BSA group), 3) a BMP-2-injected group (BMP-2 group), and 4) a COMP-Ang1 and BMP-2-injected group (COMP-Ang1 + BMP-2 group) (n = 20/group). Radiologic, histologic, and histomorphometric assessments were performed to assess femoral head morphology, vascular density, and bone resorption activity. Western blots and immunohistochemical staining were performed to evaluate production of BMP-related signaling proteins in C3H10T1/2 cells and tissues. Real-time RT-PCR was performed to investigate expression of the target integrin gene, and the effect of integrin on C3H10T1/2 cells was determined using a cell adhesion assay. Radiographs obtained six weeks after injection revealed better preservation of the architecture of the femoral head in the COMP-Ang1 + BMP-2 group compared with the BSA and BMP-2 groups. Histological findings indicated increased trabecular bone and vascularity and decreased osteoclast bone resorption activity in the COMP-Ang1 + BMP-2 group compared with those in the BSA and BMP-2 groups. The combination of COMP-Ang1 and BMP-2 increased phosphorylation of Smad1/3/5, p38, and Akt. Increased integrin α3 and β1 mRNA expression in the COMP-Ang1 + BMP-2 group promoted cell adhesion. These results suggest that COMP-Ang1 preserved the necrotic femoral head through the potentiation of BMP-2 signaling pathways and angiogenesis. Combination treatment with COMP-Ang1 and BMP-2 may be a clinically useful therapeutic application in INFH.  相似文献   

6.
The effects of pretreatment with prostaglandin E2 or the platelet-activating factor antagonist, CV-3988, on endotoxin-induced gastric damage, gastrointestinal plasma protein leakage, and systemic hypotension were examined in the rat. Endotoxic shock was induced by intravenous administration of lipopolysaccharide from Escherichia coli and was characterized by prolonged hypotension, gastrointestinal hyperemia and hemorrhage, and marked leakage of radiolabelled albumin into the interstitium and lumen of the gastrointestinal tract. Prostaglandin E2 (25-100 micrograms/kg i.v.) dose-dependently inhibited the hypotension and gastric damage induced by endotoxin. At the dose tested, CV-3988 (10 mg/kg i.v.) also significantly reduced endotoxin-induced hypotension and gastric damage. Both prostaglandin E2 (50 micrograms/kg) and CV-3988 reduced endotoxin-induced plasma protein leakage into the interstitium and lumen of the gastrointestinal tract, although there were differences in terms of the regions most affected by the two compounds. The results of the present study suggest that prostaglandin E2 and CV-3988 may have acted via a similar mechanism, possibly involving inhibition of a mediatory role of platelet-activating factor in endotoxic shock.  相似文献   

7.
Anterior uveitis associated with Behcet's disease and ankylosing spondylitis preferentially occurs in adult men, which may suggest the effects of sex hormones on acute anterior uveitis. Recently, estrogen receptors in the vascular endothelium have been reported to be involved in several pathological conditions. In the present study, we examined the gender differences in susceptibility to endotoxin-induced uveitis (EIU) and the effects of estrogen on anterior inflammation. EIU was induced in adult male, female, and ovariectomized female Lewis rats (200 g) by hind footpad injection of 200 microg of LPS. In EIU, cellular infiltration was more marked in male than in female rats, and ovariectomy increased cellular infiltration. Treatment with 10 microg of 17beta-estradiol significantly reduced the cell number in male and ovariectomized female rats with EIU. Estrogen receptor immunoreactivity was found in the nucleus of vascular endothelium and in some stromal cells of the iris-ciliary body. Semiquantitative PCR revealed that E-selectin and IL-6 gene expressions were increased in rats following LPS injection, and an overdose of tamoxifen, an estrogen receptor antagonist, reversed the effect of 17beta-estradiol on E-selectin, but not its effect on IL-6. These observations suggested that the down-modulation of these inflammatory genes by estrogen may contribute to the reduction in cellular infiltration in acute anterior uveitis.  相似文献   

8.
Endotoxin-induced lung injury in rats: role of eicosanoids   总被引:7,自引:0,他引:7  
We studied lung vascular injury and quantitated lung eicosanoids in rats after intraperitoneal injection of Salmonella enteritidis endotoxin. Within 40 min after endotoxin injection (20 mg/kg), lung tissue thromboxane B2 doubled, although 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) increased by 8- to 10-fold. Lung 5-hydroxyeicosatetraenoic acid and leukotriene C4 were variably increased by endotoxin. The levels of all eicosanoids returned to base line 6 h after endotoxin challenge. Lung vascular injury, as assessed by the extravascular accumulation of 125I-albumin and water in isolated perfused lungs, was observed 90 min after endotoxin injection (0.02-20 mg/kg) in vivo. Inhibition of the cyclooxygenase pathway with indomethacin and the lipoxygenase pathway with diethylcarbamazine and 2-(12-hydroxydodeca-5,10-dinyl)-3,5,6-trimethyl-1,4-benzoqui none failed to attenuate endotoxin-induced lung injury. In addition, essential fatty acid deficiency, which markedly reduced lung tissue levels of 6-keto-PGF1 alpha, thromboxane B2, and leukotriene C4, did not protect against endotoxin injury. We conclude that although lung eicosanoids are activated during endotoxemia, they do not play a crucial role in the development of acute lung vascular injury in rats.  相似文献   

9.
A designed angiopoietin-1 (Ang1) chimeric protein with nonleaky angiogenic activity, COMP-Ang1, is an effective alternative to native Ang1 for therapeutic angiogenesis in vivo. Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level (>20 mug/mL) of COMP-Ang1 and an amino-terminal FLAG-tag were constructed by transfecting the expression vector into dihydrofolate reductase-deficient CHO cells and the subsequent gene amplification in medium containing stepwise increments in methotrexate level such as 0.02, 0.08, 0.32, and 1 muM. The COMP-Ang1 secreted from rCHO cells was purified at a purification yield of 40.3% from the culture medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secrete COMP-Ang1 in homopentameric and homotetrameric glycoprotein forms. Furthermore, COMP-Ang1 binds to the Tie2 receptor and phosphorylates Tie2, indicating its potential for therapeutic angiogenesis.  相似文献   

10.
In the present study, we investigated the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) on tissue injury or cytotoxicity caused by endotoxin challenge by assaying lactate dehydrogenase (LDH) isozymes and cell viability in J774A.1 cells. In mice treated with L-NAME (10 mg kg(-1), i.v.), the activity of LDH in serum 18 h after endotoxin (6 mg kg(-1), i.p.) injection was not significantly different from that in mice treated with endotoxin alone. Mice injected with endotoxin exhibited leakage of LDH isozymes 3 and 5, but L-NAME did not protect against endotoxin-induced acute leakage of LDH isozymes. Treatment with L-NAME (10-1000 microM) significantly inhibited NO generation by endotoxin (1 microg ml(-1))-activated J774A.1 cells. However, L-NAME (10-1000 microM) did not affect endotoxin-induced cytotoxicity in J774A.1 cells. These findings suggested that endotoxin-induced NO formation may not contribute to tissue injury or cytotoxicity caused by endotoxin.  相似文献   

11.
Craniofacial bone defects are observed in a variety of clinical situations, and their reconstructions require coordinated coupling between angiogenesis and osteogenesis. In this study, we explored the effects of cartilage oligomeric matrix protein-angiopoietin 1 (COMP-Ang1), a synthetic and soluble variant of angiopoietin 1, on bone morphogenetic protein 2 (BMP2)-induced cranial bone regeneration, and recruitment and osteogenic differentiation of perivascular pericytes. A critical-size calvarial defect was created in the C57BL/6 mouse and COMP-Ang1 and/or BMP2 proteins were delivered into the defects with absorbable collagen sponges. After 3 weeks, bone regeneration was evaluated using micro-computed tomography and histologic examination. Pericyte recruitment into the defects was examined using immunofluorescence staining with anti-NG2 and anti-CD31 antibodies. In vitro recruitment and osteoblastic differentiation of pericyte cells were assessed with Boyden chamber assay, staining of calcified nodules, RT-PCR and Western blot analyses. Combined administration of COMP-Ang1 and BMP2 synergistically enhanced bone repair along with the increased population of CD31 (an endothelial cell marker) and NG2 (a specific marker of pericyte) positive cells. In vitro cultures of pericytes consistently showed that pericyte infiltration into the membrane pore of Boyden chamber was more enhanced by the combination treatment. In addition, the combination further increased the osteoblast-specific gene expression, including bone sialoprotein (BSP), osteocalcin (OCN) and osterix (OSX), phosphorylation of Smad/1/5/8, and mineralized nodule formation. COMP-Ang1 can enhance BMP2-induced cranial bone regeneration with increased pericyte recruitment. Combined delivery of the proteins might be a therapeutic strategy to repair cranial bone damage.  相似文献   

12.
Complement activation is an important step for triggering of acute inflammatory reactions. Soluble human recombinant complement receptor type 1 (sCR1) blocks complement activation by both classical and alternative pathways. In addition to glycogen-induced peritonitis, three models of complement-dependent acute inflammatory injury have been used to assess the protective effects of sCR1: lung and dermal injury after intraalveolar or intradermal deposition of IgG immune complexes; acute lung injury resulting from intravascular activation of complement after the i.v. injection of cobra venom factor; and acute skin and lung injury (at 4 h) after thermal trauma involving 25 to 30% total body surface area. Vascular injury was quantified by increases in vascular permeability, hemorrhage, neutrophil infiltration, and, as indicated, tissue water content. Intravenous infusion of sCR1 reduced lung and dermal vascular injury in all models studied. In glycogen-induced peritoneal exudates sCR1-reduced neutrophil accumulation by 79%. In animals undergoing IgG immune complex-induced alveolitis, sCR1 treatment reduced vascular permeability and hemorrhage by 72 and 71%, respectively, and tissue accumulation of neutrophils was reduced by 68%. After cobra venom factor injection, sCR1 reduced increases in lung vascular permeability by 67%, hemorrhage by 73%, and lung myeloperoxidase content by 55%. Four hours after thermal injury of skin, sCR1-treated animals demonstrated significant protection against lung injury; increases in vascular permeability and hemorrhage were reduced by 45 and 46%, respectively, and myeloperoxidase content was lowered by 39%. In thermal injury of the skin, sCR1 injection reduced dermal vascular permeability by 25% at 1 h (p = NS) and 44% at 4 h. Water content in skin biopsies was also decreased. There was a dose-response relationship between the amount of sCR1 infused and the extent of protection in each of the injury models. These data demonstrate that sCR1 offers significant protection against complement-dependent tissue injury in the animal models studied and that the protective effects are related to reduced neutrophil content.  相似文献   

13.
Effect of LY171883 on endotoxin-induced lung injury in pigs   总被引:3,自引:0,他引:3  
We evaluated the role of sulfidopeptide leukotrienes as mediators of endotoxin-induced respiratory failure in pigs. Escherichia coli endotoxin (055-B5) was infused intravenously into anesthetized 10- to 14-wk-old pigs at 5 micrograms/kg the 1st h followed by 2 micrograms.kg-1.h-1 for 3 h in the presence and absence of LY171883, a specific leukotriene D4 (LTD4)/LTE4 receptor antagonist. Endotoxin caused hemoconcentration, granulocytopenia, decreased cardiac index, systemic hypotension, pulmonary hypertension, increased pulmonary vascular resistance, bronchoconstriction, hypoxemia, increased permeability of the alveolar-capillary membrane, pulmonary edema, and increased plasma concentrations of thromboxane B2 (TxB2), prostaglandin F2 alpha (PGF2 alpha), and 6-keto-PGF1 alpha. LY171883 did not modify endotoxin-induced cardiopulmonary and hematologic abnormalities, except for a modest attenuation of pulmonary hypertension (at 1 h) and increased pulmonary vascular resistance (at 1-2 h). Ex vivo stimulation of whole blood with calcium ionophore caused large increases in plasma concentrations of TxB2, PGF2 alpha, and LTB4. These increases were not significantly modified in blood derived from pigs treated with LY171883, indicating no inhibition of cyclooxygenase or 5-lipoxygenase. We conclude that LTD4 and LTE4 are not important mediators of endotoxin-induced lung injury in anesthetized pigs, although they may contribute modestly to pulmonary vasoconstriction.  相似文献   

14.
HIV-1 Tat protein released by infected cells is a chemotactic molecule for leukocytes and induces a proinflammatory program in endothelial cells (EC) by activating vascular endothelial growth factor (VEGF) receptors expressed on both cell types. Its potential role in causing vascular permeability and leukocyte recruitment was studied in vivo following its s.c. injection in mice. Tat caused a dose-dependent early (15 min) and late (6 h) wave of permeability that were inhibited by a neutralizing Ab anti-VEGF receptor type 2. Tissue infiltration of lymphomononuclear cells, mainly monocytes (76%), was evident at 6 h and persisted up to 24 h. WEB2170, a platelet activating factor (PAF) receptor antagonist, reduced the early leakage by 70-80%, but only slightly inhibited the late wave and cell recruitment. In vitro, Tat induced a dose-dependent flux of albumin through the EC monolayer that was inhibited by Ab anti-vascular VEGF receptor type 2 and WEB2170, and PAF synthesis in EC that was blocked by the Ab anti-VEGF receptor type 2. Lastly, an anti-monocyte chemotactic peptide-1 (MCP-1) Ab significantly reduced the lymphomononuclear infiltration elicited by Tat. In vitro, Tat induced a dose-dependent production of MCP-1 by EC after a 24-h stimulation. These results highlighted the role of PAF and MCP-1 as secondary mediators in the onset of lymphomononuclear cell recruitment in tissues triggered by Tat.  相似文献   

15.
Because the pathogenesis of acute respiratory distress syndrome (ARDS) induced by influenza virus infection remains unknown, we can only improve on existing therapeutic interventions. To approach the subject, we investigated immunological etiology focused on cytokines and an acute lung damage factor in influenza-induced ARDS by using a PR-8 (A/H1N1)-infected mouse model. The infected mouse showed fulminant severe pneumonia with leukocyte infiltration, claudin alteration on tight junctions, and formation of hyaline membranes. In addition to interferon (IFN)-α, plenty of keratinocyte-derived chemokines (KC), macrophage inflammatory protein 2 (MIP-2), regulated on activation normal T-cell expressed and secreted (RANTES), and monocyte chemotactic protein 1 (MCP-1) were significantly released into bronchoalveolar lavage fluid (BALF) of the model. We focused on neutrophil myeloperoxidase (MPO) as a potent tissue damage factor and examined its contribution in influenza pneumonia by using mice genetically lacking in MPO. The absence of MPO reduced inflammatory damage with suppression of leakage of total BALF proteins associated with alteration of claudins in the lung. MPO(-/-) mice also suppressed viral load in the lung. The present study suggests that MPO-mediated OCl(-) generation affects claudin molecules and leads to protein leakage and viral spread as a damage factor in influenza-induced ARDS.  相似文献   

16.
Airways are densely innervated by capsaicin-sensitive sensory neurons expressing transient receptor potential vanilloid 1 (TRPV1) receptors/ion channels, which play an important regulatory role in inflammatory processes via the release of sensory neuropeptides. The aim of the present study was to investigate the role of TRPV1 receptors in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological, and biochemical techniques using receptor gene-deficient mice. Inflammation was evoked by intranasal administration of Escherichia coli lipopolysaccharide (60 microl, 167 microg/ml) in TRPV1 knockout (TRPV1(-/-)) mice and their wild-type counterparts (TRPV1(+/+)) 24 h before measurement. Airway reactivity was assessed by unrestrained whole body plethysmography, and its quantitative indicator, enhanced pause (Penh), was calculated after inhalation of the bronchoconstrictor carbachol. Histological examination and spectrophotometric myeloperoxidase measurement was performed from the lung. Somatostatin concentration was measured in the lung and plasma with radioimmunoassay. Bronchial hyperreactivity, histological lesions (perivascular/peribronchial edema, neutrophil/macrophage infiltration, goblet cell hyperplasia), and myeloperoxidase activity were significantly greater in TRPV(-/-) mice. Inflammation markedly elevated lung and plasma somatostatin concentrations in TRPV1(+/+) but not TRPV1(-/-) animals. In TRPV1(-/-) mice, exogenous administration of somatostatin-14 (4 x 100 microg/kg ip) diminished inflammation and hyperreactivity. Furthermore, in wild-type mice, antagonizing somatostatin receptors by cyclo-somatostatin (4 x 250 microg/kg ip) increased these parameters. This study provides the first evidence for a novel counterregulatory mechanism during endotoxin-induced airway inflammation, which is mediated by somatostatin released from sensory nerve terminals in response to activation of TRPV1 receptors of the lung. It reaches the systemic circulation and inhibits inflammation and consequent bronchial hyperreactivity.  相似文献   

17.
18.
Prazosin, an antagonist of the alpha 1-adrenoceptor, has been found to suppress the clinical and histologic expression of experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. This effect appears to be specific for the alpha 1-receptor. To determine the effect of this drug on vascular permeability to serum proteins and inflammatory cells, leakage of serum proteins into the central nervous system (CNS) was measured with [125I]albumin, and quantitation of cellular inflammation was determined by an estimation of total DNA. The results show that in both actively induced and passively transferred models of the disease, treatment with prazosin significantly suppresses leakage of serum proteins into the CNS but does not significantly suppress the increase of DNA. The results of the [125I]albumin studies additionally support the conclusion that the extent of vascular permeability to serum proteins in the spinal cord is a significant correlate of clinical disease. The results of the DNA estimation were at variance with the histologic evidence of cellular infiltration. We conclude that treatment with prazosin has a significant effect on the development of vascular edema in EAE. These results additionally validate a role for the adrenergic receptor in the development of EAE, and support the hypothesis that the primary site of action of prazosin is on the vascular alpha 1-adrenoceptor.  相似文献   

19.
Endotoxemia is associated with changed pulmonary vascular function with respect to vasoreactivity, endothelial permeability, and activation of inducible nitric oxide synthase II (NOSII). However, whether altered passive arterial wall mechanics contribute to this endotoxin-induced pulmonary vascular dysfunction is still unknown. Therefore, we investigated whether endotoxin affects the passive arterial mechanics and compliance of isolated rat pulmonary arteries. Pulmonary arteries of pentobarbital-anesthetized Wistar rats (n = 55) were isolated and exposed to Escherichia coli endotoxin (50 microg/ml) for 20 h. Endotoxin increased pulmonary artery diameter and compliance (transmural pressure = 13 mmHg) in an endothelium-, Ca2+-, or NOSII-induced NO release-independent manner. Interestingly, the endotoxin-induced alterations in the passive arterial mechanics were accompanied by disassembly of the smooth muscle cell (SMC) F-actin cytoskeleton. Disassembly of F-actin by incubation of control arteries with the cytoskeleton-disrupting agent cytochalasin B or the Rho-kinase inhibitor Y-27632 induced a similar increase in passive arterial diameter and compliance. In contrast, RhoA activation by lysophosphatidic acid prevented the endotoxin-induced alterations in the pulmonary SMC F-actin cytoskeleton and passive mechanics. In conclusion, these findings indicate that disassembly of the SMC F-actin cytoskeleton and RhoA/Rho-kinase signaling act as mediators of endotoxin-induced changes in the pulmonary arterial mechanics. They imply the involvement of F-actin rearrangement and RhoA/Rho-kinase signaling in endotoxemia-induced vascular lung injury.  相似文献   

20.
Endotoxin causes neutrophil-independent oxidative stress in rats   总被引:1,自引:0,他引:1  
Endotoxin-induced oxidative stress is investigated in rats by measuring changes in plasma and lung tissue levels of glutathione disulfide (GSSG) using a modified enzymatic assay that allows simultaneous measurement of up to 80 samples. Salmonella enteritidis endotoxin (2 and 20 mg/kg) acutely increased both plasma reduced glutathione and GSSG with a rise in the ratio of GSSG to total glutathione. This increase in GSSG was enhanced by pretreatment with 1,3-bis(2-chloroethyl)1-nitrosourea (BCNU), an inhibitor of the glutathione reductase enzyme. However, there was no significant arteriovenous difference in plasma GSSG across the lung, and lung tissue GSSG did not increase after endotoxin treatment. The increase in plasma GSSG was not blocked by vinblastine-induced neutropenia and could not be reproduced by incubating rat blood in vitro with endotoxin. Receptor antagonists of platelet-activating factor (PAF), at a dose that previously inhibited endotoxin-induced lung injury, attenuated the endotoxin-induced increase in plasma GSSG. We conclude that endotoxin causes neutrophil-independent oxidative stress in rats, which may be enhanced by the action of platelet-activating factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号