首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dystrobrevin‐binding protein 1 (DTNBP1) gene is a candidate risk factor for schizophrenia and has been associated with cognitive ability in both patient populations and healthy controls. DTNBP1 encodes dysbindin protein, which is localized to synaptic sites and is reduced in the prefrontal cortex and hippocampus of patients with schizophrenia, indicating a potential role in schizophrenia etiology. Most studies of dysbindin function have focused on the sandy (sdy) mice that lack dysbindin protein and have a wide range of abnormalities. In this study, we examined dysbindin salt and pepper (spp) mice that possess a single point mutation on the Dtnbp1 gene predicted to reduce, but not eliminate, dysbindin expression. By western blot analysis, we found that spp homozygous (spp ?/?) mutants had reduced dysbindin and synaptosomal‐associated protein 25 (SNAP‐25) in the prefrontal cortex, but unaltered levels in hippocampus. Behaviorally, spp mutants performed comparably to controls on a wide range of tasks assessing locomotion, anxiety, spatial recognition and working memory. However, spp ?/? mice had selective deficits in tasks measuring novel object recognition and social novelty recognition. Our results indicate that reduced dysbindin and SNAP‐25 protein in the prefrontal cortex of spp ?/? is associated with selective impairments in recognition processing. These spp mice may prove useful as a novel mouse model to study cognitive deficits linked to dysbindin alterations. Our findings also suggest that aspects of recognition memory may be specifically influenced by DTNBP1 single nucleotide polymorphisms or risk haplotypes in humans and this connection should be further investigated.  相似文献   

2.
Schizophrenia is one of the most debilitating neuropsychiatric disorders, affecting 0.5-1.0% of the population worldwide. Its pathology, attributed to defects in synaptic transmission, remains elusive. The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes a coiled-coil protein, dysbindin, is a major susceptibility gene for schizophrenia. Our previous results have demonstrated that the sandy (sdy) mouse harbors a spontaneously occurring deletion in the DTNBP1 gene and expresses no dysbindin protein (Li, W., Q. Zhang, N. Oiso, E.K. Novak, R. Gautam, E.P. O'Brien, C.L. Tinsley, D.J. Blake, R.A. Spritz, N.G. Copeland, et al. 2003. Nat. Genet. 35:84-89). Here, using amperometry, whole-cell patch clamping, and electron microscopy techniques, we discovered specific defects in neurosecretion and vesicular morphology in neuroendocrine cells and hippocampal synapses at the single vesicle level in sdy mice. These defects include larger vesicle size, slower quantal vesicle release, lower release probability, and smaller total population of the readily releasable vesicle pool. These findings suggest that dysbindin functions to regulate exocytosis and vesicle biogenesis in endocrine cells and neurons. Our work also suggests a possible mechanism in the pathogenesis of schizophrenia at the synaptic level.  相似文献   

3.
Dysbindin (DTNBP1) is a recently characterized protein that seems to be involved in the modulation of glutamatergic neurotransmission in the human brain, thereby influencing prefrontal cortex function and associated cognitive processes. While association, neuroanatomical and cellular studies indicate that DTNBP1 might be one of several susceptibility genes for schizophrenia, the effect of dysbindin on prefrontal brain function at an underlying neurophysiological level has not yet been explored for these patients. The NoGo‐anteriorization (NGA) is a topographical event‐related potential measure, which has been established as a valid neurophysiological marker of prefrontal brain function. In the present study, we investigated the influence of seven dysbindin gene variants on the NGA in a group of 44 schizophrenic patients. In line with our a priori hypothesis, one DTNBP1 polymorphism previously linked to schizophrenia (rs2619528) was found to be associated with changes in the NGA; however, the direction of this association directly contrasts with our previous findings in a healthy control sample. This differential impact of DTNBP1 gene variation on prefrontal functioning in schizophrenic patients vs. healthy controls is discussed in terms of abnormal glutamatergic baseline levels in patients suffering from schizophrenic illnesses. This is the first report on a role of DTNBP1 gene variation for prefrontal functioning at a basic neurophysiological level in schizophrenic patients. An impact on fundamental processes of cognitive response control may be one mechanism by which DTNBP1 gene variants via glutamatergic transmission contribute to the pathophysiology underlying schizophrenic illnesses.  相似文献   

4.
Dysbindin-1 (dystrobrevin-binding protein 1, DTNBP1) is one of the promising schizophrenia susceptibility genes. Dysbindin protein is abundantly expressed in synaptic regions of the hippocampus, including the terminal field of the mossy fibers, and this hippocampal expression of dysbindin is strongly reduced in patients with schizophrenia. In the present study, we examined the functional role of dysbindin in hippocampal mossy fiber-CA3 synaptic transmission and its modulation using the sandy mouse, a spontaneous mutant with deletion in the dysbindin gene. Electrophysiological recordings were made in hippocampal slices prepared from adult male sandy mice and their wild-type littermates. Basic properties of the mossy fiber synaptic transmission in the mutant mice were generally normal except for slightly reduced frequency facilitation. Serotonin and dopamine, two major neuromodulators implicated in the pathophysiology of schizophrenia, can potentiate mossy fiber synaptic transmission probably via an increase in cAMP levels. Synaptic potentiation induced by serotonin and dopamine was very variable in magnitude in the mutant mice, with some mice showing prominent enhancement as compared with the wild-type mice. In addition, the magnitude of potentiation induced by these monoamines significantly correlated with each other in the mutant mice, indicating that a subpopulation of sandy mice has marked hypersensitivity to both serotonin and dopamine. While direct activation of the cAMP cascade by forskolin induced robust synaptic potentiation in both wild-type and mutant mice, this forskolin-induced potentaition correlated in magnitude with the serotonin-induced potentiation only in the mutant mice, suggesting a possible change in coupling of receptor activation to downstream signaling. These results suggest that the dysbindin deficiency could be an essential genetic factor that causes synaptic hypersensitivity to dopamine and serotonin. The altered monoaminergic modulation at the mossy fiber synapse could be a candidate pathophysiological basis for impairment of hippocampus-dependent brain functions in schizophrenia.  相似文献   

5.
Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin‐binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome‐related organelles complex 1 (BLOC‐1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC‐1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild‐type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC‐1 expression and/or function.  相似文献   

6.
There is growing interest in the biology of dysbindin and its genetic locus (DTNBP1) due to genetic variants associated with an increased risk of schizophrenia. Reduced levels of dysbindin mRNA and protein in the hippocampal formation of schizophrenia patients further support involvement of this locus in disease risk. Here, we discuss phylogenetically conserved dysbindin molecular interactions that define its contribution to the assembly of the biogenesis of lysosome-related organelles complex-1 (BLOC-1). We explore fundamental cellular processes where dysbindin and the dysbindin-containing BLOC-1 complex are implicated. We propose that cellular, tissue, and system neurological phenotypes from dysbindin deficiencies in model genetic organisms, and likely individuals affected with schizophrenia, emerge from abnormalities in few core cellular mechanisms controlled by BLOC-1-dysbindin-containing complex rather than from defects in dysbindin itself.  相似文献   

7.
Several putative schizophrenia susceptibility genes have recently been reported, but it is not clear whether these genes are associated with schizophrenia in general or with specific disease subtypes. In a previous study, we found an association of the neuregulin 1 (NRG1) gene with non-deficit schizophrenia only. We now report an association study of four schizophrenia candidate genes in patients with and without deficit schizophrenia, which is characterized by severe and enduring negative symptoms. Single-nucleotide polymorphisms (SNPs) were genotyped in the DTNBP1 (dysbindin), G72/G30 and RGS4 genes, and the relatively unknown PIP5K2A gene, which is located in a region of linkage with both schizophrenia and bipolar disorder. The sample consisted of 273 Dutch schizophrenia patients, 146 of whom were diagnosed with deficit schizophrenia and 580 controls. The strongest evidence for association was found for the A-allele of SNP rs10828317 in the PIP5K2A gene, which was associated with both clinical subtypes (P = 0.0004 in the entire group; non-deficit P = 0.016, deficit P = 0.002). Interestingly, this SNP leads to a change in protein composition. In RGS4, the G-allele of the previously reported SNP RGS4-1 (single and as part of haplotypes with SNP RGS4-18) was associated with non-deficit schizophrenia (P = 0.03) but not with deficit schizophrenia (P = 0.79). SNPs in the DTNBP1 and G72/G30 genes were not significantly associated in any group. In conclusion, our data provide further evidence that specific genes may be involved in different schizophrenia subtypes and suggest that the PIP5K2A gene deserves further study as a general susceptibility gene for schizophrenia.  相似文献   

8.
9.
Prior evidence has supported the existence of multiple susceptibility genes for schizophrenia. Multipoint linkage analysis of the 270 Irish high-density pedigrees that we have studied, as well as results from several other samples, suggest that at least one such gene is located in region 6p24-21. In the present study, family-based association analysis of 36 simple sequence-length-polymorphism markers and of 17 SNP markers implicated two regions, separated by approximately 7 Mb. The first region, and the focus of this report, is 6p22.3. In this region, single-nucleotide polymorphisms within the 140-kb gene DTNBP1 (dystrobrevin-binding protein 1, or dysbindin) are strongly associated with schizophrenia. Uncorrected, empirical P values produced by the program TRANSMIT were significant (P<.01) for a number of individual SNP markers, and most remained significant when the data were restricted to include only one affected offspring per nuclear family per extended pedigree; multiple three-marker haplotypes were highly significant (P=.008-.0001) under the restricted conditions. The pattern of linkage disequilibrium is consistent with the presence of more than one susceptibility allele, but this important issue is unresolved. The number of markers tested in the adjacent genes, all of which are negative, is not sufficient to rule out the possibility that the dysbindin gene is not the actual susceptibility gene, but this possibility appears to be very unlikely. We conclude that further investigation of dysbindin is warranted.  相似文献   

10.
We have investigated the gene for dystrobrevin-binding protein 1 (DTNBP1), or dysbindin, which has been strongly suggested as a positional candidate gene for schizophrenia, in three samples of subjects with schizophrenia and unaffected control subjects of German (418 cases, 285 controls), Polish (294 cases, 113 controls), and Swedish (142 cases, 272 controls) descent. We analyzed five single-nucleotide polymorphisms (P1635, P1325, P1320, P1757, and P1578) and identified significant evidence of association in the Swedish sample but not in those from Germany or Poland. The results in the Swedish sample became even more significant after a separate analysis of those cases with a positive family history of schizophrenia, in whom the five-marker haplotype A-C-A-T-T showed a P value of.00009 (3.1% in controls, 17.8% in cases; OR 6.75; P=.00153 after Bonferroni correction). Our results suggest that genetic variation in the dysbindin gene is particularly involved in the development of schizophrenia in cases with a familial loading of the disease. This would also explain the difficulty of replicating this association in consecutively ascertained case-control samples, which usually comprise only a small proportion of subjects with a family history of disease.  相似文献   

11.
Sandy mice have a deletion mutation in the gene encoding dysbindin‐1, Dtnbp1, with consequent reduction of the protein in heterozygotes and its loss in homozygotes. The sandy mouse thus serves as an animal model of dysbindin‐1 function. As this protein is concentrated in synaptic tissue and affects transmitter release, it may affect neuronal processes that mediate behavior. To investigate the neurobehavioral effects of the Dtnbp1 mutation, we studied littermate sandy and wild‐type controls on a C57BL/6J genetic background. The three animal groups were indistinguishable in their external physical characteristics, sensorimotor skills and indices of anxiety‐like behaviors. In the open field, however, homozygous animals were hyperactive and appeared to show less habituation to the initially novel environment. In the Morris water maze, homozygous animals displayed clear deficits in spatial learning and memory with marginal deficits in visual association learning. Apart from the last mentioned deficits, these abnormalities are consistent with hippocampal dysfunction and in some cases with elevated dopaminergic transmission via D2 dopamine receptors. As similar deficits in spatial learning and memory have been found in schizophrenia, where decreased dysbindin‐1 has been found in the hippocampus, the sandy mouse may also model certain aspects of cognition and behavior relevant to schizophrenia.  相似文献   

12.
Genetic susceptibility plays an important role in the pathogenesis of schizophrenia. Genetic evidence for an association between the dysbindin-1 gene (DTNBP1: dystrobrevin binding protein 1) and schizophrenia has been repeatedly reported in various populations worldwide. Thus, we performed behavioral analyses on homozygous sandy (sdy) mice, which lack dysbindin-1 owing to a deletion in the Dtnbp1 gene. Our results showed that sdy mice were less active and spent less time in the center of an open field apparatus. Consistent with the latter observation, sdy mice also displayed evidence of heightened anxiety-like response and deficits in social interaction. Compared to wild-type mice, sdy mice displayed lower levels of dopamine, but not glutamate, in the cerebral cortex, hippocampus, and hypothalamus. These findings indicate that sdy mice display a number of behavioral abnormalities associated with schizophrenia and suggest that these abnormalities may be mediated by reductions in forebrain dopamine transmission.  相似文献   

13.
Dysbindin was identified as a dystrobrevin-binding protein potentially involved in the pathogenesis of muscular dystrophy. Subsequently, genetic studies have implicated variants of the human dysbindin-encoding gene, DTNBP1, in the pathogeneses of Hermansky-Pudlak syndrome and schizophrenia. The protein is a stable component of a multisubunit complex termed BLOC-1 (biogenesis of lysosome-related organelles complex-1). In the present study, the significance of the dystrobrevin-dysbindin interaction for BLOC-1 function was examined. Yeast two-hybrid analyses, and binding assays using recombinant proteins, demonstrated direct interaction involving coiled-coil-forming regions in both dysbindin and the dystrobrevins. However, recombinant proteins bearing the coiled-coil-forming regions of the dystrobrevins failed to bind endogenous BLOC-1 from HeLa cells or mouse brain or muscle, under conditions in which they bound the Dp71 isoform of dystrophin. Immunoprecipitation of endogenous dysbindin from brain or muscle resulted in robust co-immunoprecipitation of the pallidin subunit of BLOC-1 but no specific co-immunoprecipitation of dystrobrevin isoforms. Within BLOC-1, dysbindin is engaged in interactions with three other subunits, named pallidin, snapin and muted. We herein provide evidence that the same 69-residue region of dysbindin that is sufficient for dystrobrevin binding in vitro also contains the binding sites for pallidin and snapin, and at least part of the muted-binding interface. Functional, histological and immunohistochemical analyses failed to detect any sign of muscle pathology in BLOC-1-deficient, homozygous pallid mice. Taken together, these results suggest that dysbindin assembled into BLOC-1 is not a physiological binding partner of the dystrobrevins, likely due to engagement of its dystrobrevin-binding region in interactions with other subunits.  相似文献   

14.
Schizophrenia is a complex mental disorder with fairly high level of heritability. Dystrobrevin binding protein 1, a gene encoding dysbindin protein, is a susceptibility gene for schizophrenia that was identified by family-based association analysis. Recent studies revealed that dysbindin is involved in the exocytosis and/or formation of synaptic vesicles. However, the molecular function of dysbindin in synaptic transmission is largely unknown. To investigate the signaling pathway in which dysbindin is involved, we isolated dysbindin-interacting molecules from rat brain lysate by combining ammonium sulfate precipitation and dysbindin-affinity column chromatography, and identified dysbindin-interacting proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Proteins involved in protein localization process, including Munc18-1, were identified as dysbindin-interacting proteins. Munc18-1 was co-immunoprecipitated with dysbindin from rat brain lysate, and directly interacted with dysbindin in vitro . In primary cultured rat hippocampal neurons, a part of dysbindin was co-localized with Munc18-1 at pre-synaptic terminals. Our result suggests a role for dysbindin in synaptic vesicle exocytosis via interaction with Munc18-1.  相似文献   

15.
Genetic variations in the gene encoding dysbindin has consistently been associated with schizophrenia and bipolar disorder, although little is known about the neural functions carried out by dysbindin. To gain some insight into this area, we took advantage of the readily available dysbindin-null mouse sandy (sdy-/-) and studied hippocampal neurogenesis using thymidine analogue bromodeoxuridine (BrdU). No significant differences were found in the proliferation (4 hours) or survival (1, 4 and 8 weeks after the last BrdU injection) of progenitors in the subgranular regions of the dentate gyrus between sdy-/- and sdy+/+ (control) mice. However, 4 weeks after the last BrdU injection, a significant reduction was observed in the ratio of neuronal differentiation in sdy-/- when compared to that of sdy+/+ (sdy+/+ = 87.0 ± 5.3% vs. sdy-/- = 71.3 ± 8.3%, p = 0.01). These findings suggest that dysbindin plays a role during differentiation process in the adult hippocampal neurogenesis and that its deficit may negatively affect neurogenesis-related functions such as cognition and mood.  相似文献   

16.
Fei E  Ma X  Zhu C  Xue T  Yan J  Xu Y  Zhou J  Wang G 《The Journal of biological chemistry》2010,285(49):38630-38640
Dysbindin-1 is a 50-kDa coiled-coil-containing protein encoded by the gene DTNBP1 (dystrobrevin-binding protein 1), a candidate genetic factor for schizophrenia. Genetic variations in this gene confer a susceptibility to schizophrenia through a decreased expression of dysbindin-1. It was reported that dysbindin-1 regulates the expression of presynaptic proteins and the release of neurotransmitters. However, the precise functions of dysbindin-1 are largely unknown. Here, we show that dysbindin-1 is a novel nucleocytoplasmic shuttling protein and translocated to the nucleus upon treatment with leptomycin B, an inhibitor of exportin-1/CRM1-mediated nuclear export. Dysbindin-1 harbors a functional nuclear export signal necessary for its nuclear export, and the nucleocytoplasmic shuttling of dysbindin-1 affects its regulation of synapsin I expression. In brains of sandy mice, a dysbindin-1-null strain that displays abnormal behaviors related to schizophrenia, the protein and mRNA levels of synapsin I are decreased. These findings demonstrate that the nucleocytoplasmic shuttling of dysbindin-1 regulates synapsin I expression and thus may be involved in the pathogenesis of schizophrenia.  相似文献   

17.
18.
Dysbindin and DISC1 are schizophrenia susceptibility factors playing roles in neuronal development. Here we show that the physical interaction between dysbindin and DISC1 is critical for the stability of dysbindin and for the process of neurite outgrowth. We found that DISC1 forms a complex with dysbindin and increases its stability in association with a reduction in ubiquitylation. Furthermore, knockdown of DISC1 or expression of a deletion mutant, DISC1 lacking amino acid residues 403–504 of DISC1 (DISC1Δ403–504), effectively decreased levels of endogenous dysbindin. Finally, the neurite outgrowth defect induced by knockdown of DISC1 was partially reversed by coexpression of dysbindin. Taken together, these results indicate that dysbindin and DISC1 form a physiologically functional complex that is essential for normal neurite outgrowth.  相似文献   

19.
Dystrobrevin binding protein 1 (DTNBP1) gene is pivotal in regulating the glutamatergic system. Genetic variants of the DTNBP1 affect cognition and thus may be particularly relevant to schizophrenia. We therefore evaluated the association of six single nucleotide polymorphisms (SNPs) with schizophrenia in a Malaysian population (171 cases; 171 controls). Associations between these six SNPs and schizophrenia were tested in two stages. Association signals with p < 0.05 and minor allele frequency > 0.05 in stage 1 were followed by genotyping the SNPs in a replication phase (stage 2). Genotyping was performed with sequenced specific primer (PCR-SSP) and restriction fragment length polymorphism (PCR-RFLP). In our sample, we found significant associations between rs2619522 (allele p = 0.002, OR = 1.902, 95%CI = 1.266 – 2.859; genotype p = 0.002) and rs2619528 (allele p = 0.008, OR = 1.606, 95%CI = 1.130 – 2.281; genotype p = 6.18 × 10−5) and schizophrenia. Given that these two SNPs may be associated with the pathophysiology of schizophrenia, further studies on the other DTNBP1 variants are warranted.  相似文献   

20.
Linkage and association studies have recently implicated dystrobrevin-binding protein 1 (DTNBP1) in the etiology of schizophrenia. We analyzed seven previously tested DTNBP1 single-nucleotide polymorphisms (SNPs) in a cohort of 524 individuals with schizophrenia or schizoaffective disorder and 573 control subjects. The minor alleles of three SNPs (P1578, P1763, and P1765) were positively associated with the diagnosis of schizophrenia or schizoaffective disorder in the white subset of the study cohort (258 cases, 467 controls), with P1578 showing the most significant association (odds ratio 1.76, P =.0026). The same three SNPs were also associated in a smaller Hispanic subset (51 cases, 32 controls). No association was observed in the African American subset (215 cases, 74 controls). A stratified analysis of the white and Hispanic subsets showed association with the minor alleles of four SNPs (P1578, P1763, P1320, and P1765). Again, the most significant association was observed for P1578 (P =.0006). Haplotype analysis supported these findings, with a single risk haplotype significantly overrepresented in the white sample (P =.005). Our study provides further evidence for a role of the DTNBP1 gene in the genetic etiology of schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号