首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lactic acid bacteria produce and secrete bacteriocins. These bacteriocins are potent antimicrobial peptides that are active against other closely related bacteria. As a means of self-protection, producer organisms also express immunity proteins. Immunity proteins are generally located on the same genetic locus and are cotranscribed with the bacteriocin. Although some cross immunity between bacteriocins has been observed, immunity proteins are typically highly specific. Immunity proteins for the type IIa bacteriocins range from 81 to 115 amino acids in length and display substantial variation in their sequences. Nonetheless, such immunity proteins have been classified into three groupings (groups A, B, and C) according to sequence homology. The structures of a group C (ImB2) and two group A (EntA-im and PedB) immunity proteins have previously been reported. We herein report the nuclear magnetic resonance solution structure of the remaining class of the type IIa immunity proteins. PisI, a 98-amino acid protein, is a group B immunity protein conferring immunity against piscicolin 126 (PisA). Like ImB2, EntA-im, and PedB, PisI folds into a globular protein in aqueous solution and contains an antiparallel four-helix bundle. Compared to ImB2 and EntA-im, PisI has a substantially longer and more flexible N-terminus, but a shorter C-terminus. No direct interaction between the bacteriocin and immunity protein is observed by NMR in either aqueous or membrane mimicking environments. This further suggests that the mechanism that mediates immunity is not due to a direct bacteriocin-immunity protein interaction but rather is receptor-mediated. It has now been confirmed that the four-helix bundle is indeed a structural motif among the type IIa immunity proteins.  相似文献   

2.
Sprules T  Kawulka KE  Vederas JC 《Biochemistry》2004,43(37):11740-11749
Bacteriocins produced by lactic acid bacteria are potent antimicrobial compounds which are active against closely related bacteria. Producer strains are protected against the effects of their cognate bacteriocins by immunity proteins that are located on the same genetic locus and are coexpressed with the gene encoding the bacteriocin. Several structures are available for class IIa bacteriocins; however, to date, no structures are available for the corresponding immunity proteins. We report here the NMR solution structure of the 111-amino acid immunity protein for carnobacteriocin B2 (ImB2). ImB2 folds into a globular domain in aqueous solution which contains an antiparallel four-helix bundle. Extensive packing by hydrophobic side chains in adjacent helices forms the core of the protein. The C-terminus, containing a fifth helix and an extended strand, is held against the four-helix bundle by hydrophobic interactions with helices 3 and 4. Most of the charged and polar residues in the protein face the solvent. Helix 3 is well-defined to residue 55, and a stretch of nascent helix followed by an unstructured loop joins it to helix 4. No interaction is observed between ImB2 and either carnobacteriocin B2 (CbnB2) or its precursor. Protection from the action of CbnB2 is only observed when ImB2 is expressed within the cell. The loop between helices 3 and 4, and a hydrophobic pocket which it partially masks, may be important for interaction with membrane receptors responsible for sensitivity to class IIa bacteriocins.  相似文献   

3.
Many Gram-positive bacteria produce ribosomally synthesized antimicrobial peptides, often termed bacteriocins. Genes encoding pediocin-like bacteriocins are generally cotranscribed with or in close vicinity to a gene encoding a cognate immunity protein that protects the bacteriocin-producer from their own bacteriocin. We present the first crystal structure of a pediocin-like immunity protein, EntA-im, conferring immunity to the bacteriocin enterocin A. Determination of the structure of this 103-amino acid protein revealed that it folds into an antiparallel four-helix bundle with a flexible C-terminal part. The fact that the immunity protein conferring immunity to carnobacteriocin B2 also consists of a four-helix bundle (Sprules, T., Kawulka, K. E., and Vederas, J. C. (2004) Biochemistry 43, 11740-11749) strongly indicates that this is a conserved structural motif in all pediocin-like immunity proteins. The C-terminal half of the immunity protein contains a region that recognizes the C-terminal half of the cognate bacteriocin, and the flexibility in the C-terminal end of the immunity protein might thus be an important characteristic that enables the immunity protein to interact with its cognate bacteriocin. By homology modeling of three other pediocin-like immunity proteins and calculation of the surface charge distribution for EntA-im and the three structure models, different charge distributions were observed. The differences in the latter part of helix 3, the beginning of helix 4, and the loop connecting these helices might also be of importance in determining the specificity.  相似文献   

4.
Bacterial cell division is mediated by a multi-protein machine known as the "divisome", which assembles at the site of cell division. Formation of the divisome starts with the polymerization of the tubulin-like protein FtsZ into a ring, the Z-ring. Z-ring formation is under tight control to ensure bacteria divide at the right time and place. Several proteins bind to the Z-ring to mediate its membrane association and persistence throughout the division process. A conserved stretch of amino acids at the C-terminus of FtsZ appears to be involved in many interactions with other proteins. Here, we describe a novel pull-down assay to look for binding partners of the FtsZ C-terminus, using a HaloTag affinity tag fused to the C-terminal 69 amino acids of B. subtilis FtsZ. Using lysates of Escherichia coli overexpressing several B. subtilis cell division proteins as prey we show that the FtsZ C-terminus specifically pulls down SepF, but not EzrA or MinC, and that the interaction depends on a conserved 16 amino acid stretch at the extreme C-terminus. In a reverse pull-down SepF binds to full-length FtsZ but not to a FtsZΔC16 truncate or FtsZ with a mutation of a conserved proline in the C-terminus. We show that the FtsZ C-terminus is required for the formation of tubules from FtsZ polymers by SepF rings. An alanine-scan of the conserved 16 amino acid stretch shows that many mutations affect SepF binding. Combined with the observation that SepF also interacts with the C-terminus of E. coli FtsZ, which is not an in vivo binding partner, we propose that the secondary and tertiary structure of the FtsZ C-terminus, rather than specific amino acids, are recognized by SepF.  相似文献   

5.
Expressed protein ligation (EPL) and bioconjugation based on the maleimide group (MIC-conjugation) provide powerful tools for protein modification. In the light of the importance of site-selectively modified proteins for the study of protein function, a flexible method for the introduction of tags and reporter groups into the C-terminus of proteins employing EPL and MIC-conjugation was developed. We describe the solid-phase synthesis of a generic building block, equipped with fluorescence markers or different functional groups. This generic building block allows for a flexible incorporation of different tags into proteins and was used for the introduction of fluorescence markers into the C-terminus of Rab and Ras GTPases by EPL or MIC-conjugation techniques. In addition, a building block appropriately modified for the incorporation of an azide into proteins was synthesized. Azide-functionalized Ras protein was immobilized on a phosphane-modified surface by means of Staudinger ligation providing a highly chemoselective ligation method for the immobilization of proteins.  相似文献   

6.
The immunity proteins of pediocin-like bacteriocins possess a positively charged region which is located at the C-terminus in all three subclasses. It has been suggested that this region may be involved in directing the immunity protein to the surface of the bacterial cell membrane. The aim of this study was to determine whether the positively charged residue lysine-46 (K46) around the hydrophobic pocket played a key role for immunity activity of subgroup A immunity protein PedB. At first, heterologous expression of the immune gene pedB from Lactobacillus plantarum BM-1 rendered the sensitive Lactobacillus plantarum WQ0815 resistant to bacteriocin BM-1. Then, using site-directed mutagenesis, the residue K46 was replaced by five different amino-acid residues, including arginine (R), aspartate (D), glutamate (E), glutamine (Q), and threonine (T). Western blot analysis confirmed that all mutated pedB genes were successfully expressed in the host L. plantarum WQ0815. Bacteriocin activity assays subsequently showed that any substitution of the K46 residue significantly reduced its immunity activity. Our present results indicated that the positively charged residue K46 located near the hydrophobic pocket was essential for the functionality of the immunity protein PedB.  相似文献   

7.
Latent membrane protein 1 (LMP1), a major oncoprotein of Epstein Barr Virus (EBV) is responsible for transforming B lymphocytes in vitro. LMP1 is overexpressed in several EBV-associated malignancies, and different approaches have been developed to reduce its level and accordingly its oncogenic function in tumor tissues. This study aimed to use phage display peptide library to obtain peptides which could specifically bind to the cytoplasmic region of LMP1 to prevent its interaction with signaling proteins. The LMP1 C-terminus region was produced in bacterial E. coli and used as target for the phage library panning. After 3 rounds, 20 phage clones were randomly selected and 8 showed high binding affinity to the recombinant C-terminus LMP1 protein. The most interesting candidates are the FO5 “QPTKDSSPPLRV” and NO4 “STTSPPAVPHNN” peptides since both bind the C-terminus LMP1 as showed by molecular docking. Furthermore, sequence alignment revealed that the FO5 peptide shared sequence similarity with the Death Receptor 4 which belongs to the tumor necrosis factor-related apoptosis-inducing receptor which plays key role in anti-tumor immunity.  相似文献   

8.
Phage λ Orf substitutes for the activities of the Escherichia coli RecFOR proteins in vivo and is therefore implicated as a recombination mediator, encouraging the assembly of bacterial RecA onto single-stranded DNA (ssDNA) coated with SSB. Orf exists as a dimer in solution, associates with E. coli SSB and binds preferentially to ssDNA. To help identify interacting domains we analysed Orf and SSB proteins carrying mutations or truncations in the C-terminal region. A cluster of acidic residues at the carboxy-terminus of SSB is known to attract multiple protein partners to assist in DNA replication and repair. In this case an alternative domain must be utilized since Orf association with SSB was unaffected by an SSB113 point mutant (P176S) or removal of the last ten residues (ΔC10). Structurally the Orf C-terminus consists of a helix with a flexible tail that protrudes from each side of the dimer and could serve as a binding site for either SSB or DNA. Eliminating the six residue flexible tail (ΔC6) or the entire helix (ΔC19) had no significant impact on the Orf-SSB interaction. However, the OrfΔC6 protein exhibited reduced DNA binding, a feature shared by single amino acid substitutions within (W141F) or adjacent (R140A) to this region. The OrfΔC19 mutant bound poorly to DNA and secondary structure analysis in solution revealed that this truncation induces protein misfolding and aggregation. The results show that the carboxy-terminus of Orf is involved in nucleic acid recognition and also plays an unexpected role in maintaining structural integrity.  相似文献   

9.
A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structure-function relationships. Although these maps can be predicted directly from amino acid sequence, the predictions are more accurate if combined with experimental data, which are usually obtained by fusing a reporter protein to the C-terminus of the protein. However, as reporter proteins are large, they cannot be used to report on the cytoplasmic/periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli.  相似文献   

10.
Influenza A virus matrix protein M1 is one of the most important and abundant proteins in the virus particles broadly involved in essential processes of the viral life cycle. The absence of high-resolution data on the full-length M1 makes the structural investigation of the intact protein particularly important. We employed synchrotron small-angle X-ray scattering (SAXS), analytical ultracentrifugation and atomic force microscopy (AFM) to study the structure of M1 at acidic pH. The low-resolution structural models built from the SAXS data reveal a structurally anisotropic M1 molecule consisting of a compact NM-fragment and an extended and partially flexible C-terminal domain. The M1 monomers co-exist in solution with a small fraction of large clusters that have a layered architecture similar to that observed in the authentic influenza virions. AFM analysis on a lipid-like negatively charged surface reveals that M1 forms ordered stripes correlating well with the clusters observed by SAXS. The free NM-domain is monomeric in acidic solution with the overall structure similar to that observed in previously determined crystal structures. The NM-domain does not spontaneously self assemble supporting the key role of the C-terminus of M1 in the formation of supramolecular structures. Our results suggest that the flexibility of the C-terminus is an essential feature, which may be responsible for the multi-functionality of the entire protein. In particular, this flexibility could allow M1 to structurally organise the viral membrane to maintain the integrity and the shape of the intact influenza virus.  相似文献   

11.
A subgroup of the AAA+ proteins that reside in the endoplasmic reticulum and the nuclear envelope including human torsinA, a protein mutated in hereditary dystonia, is called the torsin family of AAA+ proteins. A multiple-sequence alignment of this family with Hsp100 proteins of known structure reveals a conserved cysteine in the C-terminus of torsin proteins within the Sensor-II motif. A structural model predicts this cysteine to be a part of an intramolecular disulfide bond, suggesting that it may function as a redox sensor to regulate ATPase activity. In vitro experiments with OOC-5, a torsinA homolog from Caenorhabditis elegans, demonstrate that redox changes that reduce this disulfide bond affect the binding of ATP and ADP and cause an attendant local conformational change detected by limited proteolysis. Transgenic worms expressing an ooc-5 gene with cysteine-to-serine mutations that disrupt the disulfide bond have a very low embryo hatch rate compared with wild-type controls, indicating these two cysteines are essential for OOC-5 function. We propose that the Sensor-II in torsin family proteins is a redox-regulated sensor. This regulatory mechanism may be central to the function of OOC-5 and human torsinA.  相似文献   

12.
Enterocyte differentiation is correlated to the expression of specific proteins which only a few of them are identified. In this study, we characterize a new marker of enterocyte differentiation using monoclonal antibodies. We showed that small intestinal enterocytes specifically express a new 47 kDa protein named Enterocytin. Expression of this protein increase along the crypt-villus axis and it is concentrated in the terminal web, lateral plasma membrane domain, and nucleus membrane of mature enterocytes. A 1.8-kb cDNA of Enterocytin was isolated by expression cloning from a cDNA library of rabbit small intestine. The amino acid sequence obtained shows an N-terminal region with a coiled-coil structure and a B30.2-like domain in the C-terminus region. By co-transfection and immunoprecipitation procedures on Cos cells, it was observed that the coiled-coil domain is involved in the homodimerization of Enterocytin. In the human intestine, a similar 47 kDa protein was detected, exclusively in the small intestinal enterocytes. In addition, expression of this protein in Caco2 cells is correlated with the state of differentiation of these cells. The restricted expression of Enterocytin in the intestine and its localization in mature cells suggest that it may contribute to the differentiation processes and maintenance of the enterocytic polarity.  相似文献   

13.
Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors.  相似文献   

14.
The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. In a previous study of regulation of individual 14-3-3 isoforms in the germinating barley embryo, we found that a post-translationally modified, 28 kDa form of 14-3-3A was present in specific cell fractions of the germinated embryo. In the present study, we identify the nature of the modification of 14-3-3A, and show that the 28 kDa doublet is the result of cleavage of the C-terminus. The 28 kDa forms of 14-3-3A lack ten or twelve amino acid residues at the non-conserved C-terminus of the protein, respectively. Barley 14-3-3B and 14-3-3C are not modified in a similar way. Like the 30 kDa form, in vitro produced 28 kDa 14-3-3A is still capable of binding AHA2 H+-ATPase in an overlay assay. Our results show a novel isoform-specific post-translational modification of 14-3-3 proteins that is regulated in a tissue-specific and developmental way.  相似文献   

15.
Clark TG  Lin TL  Jackwood DA  Sherrill J  Lin Y  Dickerson HW 《Gene》1999,229(1-2):91-100
Immobilization antigens are highly abundant surface membrane proteins that coat the surface of hymenostomatid ciliates. While their function is unknown, recent studies with the common fish parasite, Ichthyophthirius multifiliis, suggest their involvement in a novel mechanism of humoral immunity involving an effect of antibody on parasite behavior. To gain further insight into the nature of these proteins, we have cloned a gene encoding the 48kDa i-antigen of I. multifiliis. Analysis of the gene (designated IAG48[G1]) reveals a single, uninterrupted reading frame that predicts a protein of 442 amino acids. Based on its deduced amino acid sequence, the protein contains hydrophobic amino acid domains at its N- and C-terminus that are characteristic of signal peptide and GPI-anchor addition sites, respectively. The most striking feature of the predicted protein, however, is a series of tandem repeats that spans most of its length. The repeats themselves are characterized by periodic cysteine residues that fall into register when the homologous segments are aligned. Interestingly, the spacing of cysteines (C-X2,3-C) within a framework of larger (C-X2-C-X20-C-X3-C-X20-C-X2-C) motifs is entirely consistent with the structure of known zinc-binding proteins. Finally, comparison of the coding sequence of the 48kDa i-antigen gene with a partial cDNA previously thought to encode this protein reveals nearly complete identity except at their 3' ends, suggesting that alternative forms of the antigen exist.  相似文献   

16.
Gram-positive bacteria code for one or more enzymes termed sortases which catalyze the covalent anchoring of substrate proteins on their cell wall. They recognize an amino acid sequence designated sorting motif, present close to the C-terminal end of the substrate proteins, cleave within this motif and catalyze anchoring of the polypeptide chain to the peptide crossbridge linking the peptidoglycan strands in a transpeptidation reaction. Bacillus subtilis has been reported to code for two different sortases but the sorting sequences recognized by them are yet unknown. To be able to immobilize proteins on the surface of B. subtilis cells, we introduced the srtA gene coding for sortase A of Listeria monocytogenes with the known sorting motif (LPXTG) into B. subtilis. L. monocytogenes and B. subtilis share the same peptide crossbridge. Next, we fused the coding region of an alpha-amylase gene to the C-terminal region of Staphylococcus aureus fibronectin binding protein B containing the sorting motif. Covalent linkage could be proven by treatment of the cells with lysozyme and by immunofluorescence microscopy. Up to 240,000 molecules of alpha-amylase could be immobilized per cell, 24 times more than previously reported for other bacterial species. To study the influence of the distance between the sorting motif and the C-terminus of alpha-amylase on the activity of the enzyme, the length of the spacer was varied. It turned out that the highest activity was measured with a spacer length of 123 amino acid residues.  相似文献   

17.
Type II polyketide synthases (PKSs) utilize a dedicated and essential acyl carrier protein (ACP) in the biosynthesis of a specific polyketide product. As part of our ongoing studies into the mechanisms and control of polyketide biosynthesis, we report the second structure of a polyketide synthase ACP. In this work, multidimensional, heteronuclear NMR was employed to investigate the structure and dynamics of the ACP involved in the biosynthesis of the commonly prescribed polyketide antibiotic, oxytetracycline (otc). An ensemble of 28 structures of the 95 amino acid otc ACP (9916Da) was computed by simulated annealing with the inclusion of 1132 experimental restraints. Atomic RMSDs about the mean structure for all 28 models is 0.66 A for backbone atoms, 1.15 A for all heavy atoms (both values calculated for the folded part of the protein (residues 3-80)), and 0.41 A for backbone atoms within secondary structure. Otc ACP adopts the typical right-handed, four-helix fold of currently known ACPs but with the addition of a 13-residue flexible C-terminus. A comparison of the global folds of all structurally characterized ACPs is described, illustrating that PKS ACPs show clear differences as well as similarities to FAS ACPs. (15)N relaxation experiments for the protein backbone also reveal that the long loop between helices I and II is flexible and helix II, a proposed site of protein-protein interactions, shows conformational exchange. The helices of the ACP form a rigid scaffold for the protein, but these are interspersed with an unusual proportion of flexible linker regions.  相似文献   

18.
Mak AN  Wong YT  An YJ  Cha SS  Sze KH  Au SW  Wong KB  Shaw PC 《Nucleic acids research》2007,35(18):6259-6267
Maize ribosome-inactivating protein is classified as a class III or an atypical RNA N-glycosidase. It is synthesized as an inactive precursor with a 25-amino acid internal inactivation region, which is removed in the active form. As the first structural example of this class of proteins, crystals of the precursor and the active form were diffracted to 2.4 and 2.5 A, respectively. The two proteins are similar, with main chain root mean square deviation (RMSD) of 0.519. In the precursor, the inactivation region is found on the protein surface and consists of a flexible loop followed by a long alpha-helix. This region diminished both the interaction with ribosome and cytotoxicity, but not cellular uptake. Like bacterial ribosome-inactivating proteins, maize ribosome-inactivating protein does not have a back-up glutamate in the active site, which helps the protein to retain some activity if the catalytic glutamate is mutated. The structure reveals that the active site is too small to accommodate two glutamate residues. Our structure suggests that maize ribosome-inactivating protein may represent an intermediate product in the evolution of ribosome-inactivating proteins.  相似文献   

19.
The M2 protein of respiratory syncytial virus (RSV) is a protective antigen in H-2d, but not H-2b or H-2k mice. None of the other RSV proteins, excluding the surface glycoproteins that induce neutralizing antibodies, is protective in mice bearing these haplotypes. Thus, the M2 protein stands alone as a nonglycoprotein-protective antigen of RSV. The M2 protein is a target for murine Kd-restricted cytotoxic T lymphocytes (CTLs), and the resistance induced by infection with a vaccinia virus-RSV M2 (vac-M2) recombinant is mediated by CD8+ CTLs. Since the nonameric consensus sequence for H-2 Kd-restricted T-cell epitopes and the amino acid sequence of the M2 protein of subgroup A and B strains of RSV are known, the present study sought to identify the specific epitope(s) on the M2 protein recognized by CD8+ CTLs. This was done by examining the ability of four predicted Kd-specific motif peptides present in the M2 amino acid sequence of an RSV subgroup A strain to sensitize target cells for lysis by pulmonary or splenic CTLs obtained from mice infected with RSV or vac-M2. The following observations were made. First, two of the four peptides sensitized target cells for lysis by pulmonary or splenic CTLs induced by infection with either vac-M2 or RSV. Second, one of the two peptides, namely the 82-90 (M2) peptide, sensitized targets at a very low peptide concentration (10(-10) to 10(-12) M). Third, cold-target competition experiments revealed that the predominant CTL population induced by infection with vac-M2 or RSV recognized the 82-90 (M2) peptide, and this CTL population appeared to recognize the 71-79 (M2) peptide in a cross-reactive manner. Fourth, CTL recognition of targets sensitized with either the 71-79 (M2) or the 82-90 (M2) peptide was Kd restricted. Fifth, CTLs induced by infection with RSV subgroup A or B strains recognized the two M2 peptides. The findings suggest that the M2 protein of RSV contains an immunodominant Kd-restricted CTL epitope consisting of amino acid residues 82 to 90 (SYIGSINNI), which are shared by subgroup A and B RSVs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号