首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We investigated the temporal relationship between the level of cyclic AMP, the activation of cyclic AMP-dependent protein kinase(s), and the induction of ornithine decarboxylase in two important rapid growth systems: the regenerating rat liver and the remaining adrenal gland following unilateral adrenalectomy. There was a biphasic increase in the aactivity of ornithine decarboxylase at 4 and 14 h following partial hepatectomy. The concentration of cyclic AMP increased 2-fold compared to sham-operated animals within 2–3 h, returned to baseline by 8 h, and was elevated again 3-fold by 12 hours. The activation of cyclic AMP-dependent protein kinase(s) occured in a similar biphasic manner. From a control activity ratio (?cAMP/+cAMP) of 0.4, values for total soluble kinase activation reached 0.75 at both 2 and 14 h. After a delay of 2 h following unilateral adrenalectomy, ornithine decarboxylase activity in the remaining adrenal gland increased 15–20-fold of control level by 8 h. Cyclic AMP concentrations in the adrenal were elevated 3.5-fold within 30 min. The protein kinase activation increased from 0.25 to nearly a totally activated state of 1.0 within 1 h, decline to 0.4 by 2 h, and returned to the level of the sham-operated controls at 8 h. In both the rat liver in response to partial hepatectomy and the adrenal gland undergoing hypertrophy, cyclic AMP-dependent protein kinase(s) was markedly activated prior to increases in ornithine decarboxylase activity.  相似文献   

2.
In cultured NG 108-15 neuroblastoma x glioma cells, opiates decreased cellular cyclic AMP and polyamine levels. This decrease was related to the inhibition of ornithine decarboxylase and cyclic AMP-dependent protein kinase activities during the acute exposure of the cells to the drugs. Growing the cells in the presence of opiates for several days led to drug addiction. In the tolerant-addicted cells, polyamine and cyclic AMP levels were close to normal values as were the activities of ornithine decarboxylase and cyclic AMP-dependent protein kinase. Removal of the opiate from 'addicted' cells, by either washing or by adding the antagonist naloxone, resulted in an increase in cyclic AMP and polyamine levels and the activities of ornithine decarboxylase and cyclic AMP-dependent protein kinase. The effect of opiates was closely related to their biological activities. Inactive enantiomorphs did not affect cyclic AMP or polyamine levels; neither did they decrease ornithine decarboxylase and cyclic AMP-dependent protein kinase activities.  相似文献   

3.
Ornithine decarboxylase (ODC) inductions by cholera toxin and by the phorbol ester tumor promoter, TPA, were compared in wild-type Chinese hamster ovary (CHO) cells and in mutant cells having altered cyclic AMP-dependent protein kinase activity. The aim of these studies was to determine whether cyclic AMP-dependent protein kinase is involved in these inductions. The time course and the magnitude of ODC inductions by either 100 ng/ml cholera toxin or 100 ng/ml TPA were similar in wild-type cells with a maximum at 3-4 hours after treatment and a return to unstimulated levels by 8 hours. Induction of ODC by cholera toxin was suppressed more than 80% in the four protein kinase mutants studied (10215, 10248, 10260, and 10265), strongly implicating a cyclic AMP-dependent kinase step in the mechanism of induction. Similar results were found with the cyclic AMP analog 8-Br-cyclic AMP and the phosphodiesterase inhibitor, methyl-isobutylxanthine. The induction of ODC by TPA, on the other hand, was only partially inhibited (approximately 50%) in three of four mutants. Lower ODC activity in two mutants stimulated by cholera toxin or TPA whose kinetics were studied in more detail could not be ascribed to a reduced affinity (Km) of ornithine for the enzyme, but appeared to be due to reduced catalytic activity (Vmax) in the extracts. These results suggest that the induction of ODC by TPA proceeds by a mechanism which is only partially dependent on an intact cyclic AMP-dependent protein kinase activity.  相似文献   

4.
A single dose of growth hormone (10 mg/kg, i.p.) was injected into male weanling rats (50--60 g), and the temporal changes in cyclic AMP concentration, protein kinase activation, and ornithine decarboxylase activation were measured in the liver and adrenal gland. The level of cyclic AMP did not change significantly from control values in either liver or adrenal following growth hormone administration. Cyclic AMP-dependent protein kinase(s); however, was markedly activated in liver and adrenal within 30 min. Protein kinase remained activated for more than 4 hr in the liver, while activation of protein kinase in the adrenal returned to control value within 2 hr. Ornithine decarboxylase activity was elevated 20-fold in liver within 4 hr of injection and was increased 7- to 8-fold in be adrenal within l hr. These observations are discussed with regard to the generality of the role of cyclic AMP as the second messenger for target-specifici trophic hormone action and the significance of protein kinase activiation as an index of the cyclic nucleotide involvement in the growth response.  相似文献   

5.
Chinese hamster ovary cells were synchronized by selective detachment of cells in mitosis. The adenosine 3':5'-cyclic monophosphate (cyclic AMP) intracellular concentrations and cyclic AMP-dependent protein kinase activities were measured as these cells traversed G1 phase and entered S phase. Protein kinase activity, assayed in the presence or absence of saturating exogenous cyclic AMP in the reaction mixture, was lowest in early G1 phase (2 h after mitosis), increased 2-fold (plus exogenous cyclic AMP in reaction mixture) or 3.5-fold (minus cyclic AMP in reaction mixture) to maximum values in mid to late G1 phase (4-5 h after mitosis), and then decreased as cells entered S phase. Intracellular cyclic AMP concentrations were minimal 1 h after mitosis, increased 5-fold to maximum levels at 4-6 after mitosis, and decreased as cells entered S phase. Similar to the fluctuations in intracellular cyclic AMP, the cyclic AMP-dependent protein kinase activity ratio increased more than 40% in late G1 or early S phase. Puromycin (either 10 mug/ml or 50 mug/ml) administered 1 h after mitosis inhibited cyclic AMP-dependent protein kinase activity up to 50% by 5 h after mitosis, while similar treatment (10 mug/ml) had no effect on the increase in cyclic AMP formation. These data demonstrate that: (1) total protein kinase activity changed during G1 phase and this increase was dependent on new protein synthesis; (2) the increased intracellular concentrations of cyclic AMP were not dependent on new protein synthesis; and (3) the activation of cyclic AMP-dependent protein kinase was temporally coordinated with increased intracellular concentration of cycli AMP as Chinese hamster ovary cells traversed G1 phase and entered S phase. These results suggest that cyclic AMP acts during G1 phase to regulate the activation of cyclic AMP-dependent protein kinase.  相似文献   

6.
A single dose of aminophylline (200 μmol/kg, i.p.) or triiodothyronine (T3, 300 μg/kg, i.p.) resulted in the induction of ornithine decarboxylase (ODC) in rat liver with maximal activity 10-fold and 6-fold above controls, respectively, 4 hr after the administration of the drug or hormone. After either agent, the induction of ODC was blocked by either cycloheximide or actinomycin D. The same concentrations of aminophylline and T3 administered simultaneously produced an additive 16-fold increase in ODC activity. After T3 administration, the cyclic AMP-dependent protein kinase activity ratio was unaltered at all times measured. After aminophylline, the protein kinase activity ratio was elevated by 15 min and remained elevated for 2 hr. Somatostatin administration (50 μg/100 g), which lowers plasma growth hormone to 30% of control, had no effect on the ability of T3 to induce ODC. These data suggest separate routes of induction of ODC in response to aminophylline and T3. Aminophylline induction occurs via cycyclic AMP-mediated event whereas T3 does not involve ccyclic AMP but results from a direct nuclear interaction.  相似文献   

7.
Cyclic AMP dependent protein kinase has beeen identified in human skeletal muscle tissue. In crude muscle extracts the enzyme was 3--5 fold activated by cyclic AMP. The cyclic AMP-dependent activity (corresponding to the inactive holoenzyme) was completely inhibited by the heat stable inhibitor of protein kinase. Reciprocal changes of the cyclic AMP-dependent activity in skeletal muscle were observed after administration of epinephrine and insulin in vivo. Infusion of epinephrine in healthy volunteers increased the level of cyclic AMP and decreased the activity of the cyclic AMP-depenent form (i.e. the inactive form) of protein kinase. These changes were reversible after cessation of epinephrine administration. The results are consistent with an activation of protein kinase in vivo due to an epinephrine mediated increase of the concentration of cyclic AMP. I.v. injection of insulin had the opposite effect on the enzyme in skeletal muscle, leading to increased activity of the cyclic AMP-dependent form of protein kinase. Insulin had no effect on the level of cyclic AMP, but promoted a transient increase of cyclic GMP 1 min. after insulin injection. The effect by insulin on protein kinase cannot be related to the level of cyclic AMP or cyclic GMP.  相似文献   

8.
1. The effects of thyroliberin were studied in cultured rat pituitary-tumour cells that synthesize and secrete prolactin (the GH4C1 cell strain). 2. Prolactin and cyclic AMP were measured by radioimmunological methods, and a cyclic AMP-dependent protein kinase was characterized by using histone as substrate. 3. Prolactin release was studied after 5-60min of treatment, and synthesis after 48h of treatment with thyroliberin. One-half maximum stimulation of release and synthesis were observed at 0.25 and at 4nM respectively. 4. Cyclic AMP was temporarily increased in cell suspensions after treatment with thyroliberin, and one-half maximum stimulation was observed at 25nM. 5. Dibutyryl cyclic AMP increased prolactin release and synthesis, one-half maximum effects being obtained at 20 micronM. 6. A cyclic AMP-dependent protein kinase, which was one-half maximally stimulated at 30 nM-cyclic AMP, was demonstrated. 7. An increase in the activity ratio (-cyclic AMP/+cyclic AMP) of the cyclic AMP-dependent protein kinase was observed after treatment with thyroliberin. Total protein kinase activity in the presence of cyclic AMP was unaltered. The time-course of enzyme activation was similar to that of cyclic AMP formation and corresponded to the time when prolactin release was first observed. 8. It is concluded that thyroliberin induces cyclic AMP formation, resulting in the activation of a cyclic AMP-dependent protein kinase.  相似文献   

9.
Any one of five amino acis (alanine, asparagine, glutamine, glycine, and serine) is an essential requirement for the induction of ornithine decarboxylase (EC 4.1.1.17) in cultured chinese hamster ovary (CHO) cells maintained with a salts/glucose, medium. Each of these amino acids induced a striking activation of ornithine decarboxylase in the presence of dibutyryl cyclic AMP and luteinizing hormone. The effect of the other amino acids was considerably less or negligible. The active amino acids at optimal concentrations (10 mM) induced only a 10-20 fold enhancement of enzyme activity alone, while in the presence of dibutyryl cyclic AMP, ornithine decarboxylase activity was increased 40-50 fold within 7-8 h. Of the hormones and drugs tested, luteinizing hormone resulted in the highest (300-500 fold) induction of ornithine decarboxylase with optimal concentrations of dibutyryl cyclic AMP and asparagnine. Omission of dibutyryl cyclic AMP reduced this maximal activation to one half while optimal levels of luteinizing hormone alone caused no enhancement of ornithine decarboxylase activity. The induction of ornithine decarboxylase elicited by dibutyryl cyclic AMP, amino acid and luteinizing hormone was diminished about 50% with inhibitors of RNA and protein synthesis. The specific amino acid requirements for ornithine decarboxylase induction in chinese hamster ovary cells was similar to the requirements for induction in two other transformed cell lines. Understanding the mechanism of enzyme induction requires an identification of the essential components of the regulatory system. The essential requirement for enzyme induction is one of five amino acids. The induction of ornithine decarboxylase by dibutyryl cyclic AMP and luteinizing hormone was additive in the presence of an active amino acid.  相似文献   

10.
11.
In rat hepatocytes, vanadate modifies neither the intracellular concentration of cyclic AMP nor the --cyclic AMP/+cyclic AMP activity ratio for cyclic AMP-dependent protein kinase. Vanadate can, however, counteract the increase in cyclic AMP and the increase in the --cyclic AMP/+cyclic AMP activity ratio of cyclic AMP-dependent protein kinase induced by glucagon. On the other hand, vanadate treatment of hepatocytes can produce a time- and concentration-dependent increase in cyclic AMP- and Ca2+-independent casein kinase activity. Maximal activation at the optimal time with 5 mM-vanadate was about 70% over control. A clear relationship was observed between the activation of casein kinase and the inactivation of glycogen synthase after vanadate treatment. These results suggest that casein kinase activity may be involved in vanadate actions in rat hepatocytes.  相似文献   

12.
C V Byus  D H Russell 《Life sciences》1974,15(11):1991-1997
The administration of aminophylline results in rapid increases in cyclic AMP in the adrenal medulla, adrenal cortex, liver, and kidney of the rat. The injection of theophylline results in a similar increase in cyclic AMP in the liver of the rat. In all instances, these increases are followed by 4- to 2-fold elevations of ornithine decarboxylase activity. The generality of this phenomena suggests that ornithine decarboxylase activity is regulated by an increase in cyclic AMP.  相似文献   

13.
Hormonal control of liver regeneration   总被引:3,自引:1,他引:2  
Two peaks in cyclic AMP production in rat livers 4 and 12h after partial hepatectomy (MacManus et al., 1972) were confirmed and a third peak established at 22h, which is the peak of DNA synthesis. The increases in cyclic AMP were prevented by beta-adrenergic blocking agents, propranolol and pindolol, without affecting ornithine decarboxylase induction or DNA synthesis. The alpha-blocking agents, phenoxybenzamine and phentolamine, given at the time of partial hepatectomy, delayed the rise in ornithine decarboxylase normally found 4h after operation, but did not affect DNA synthesis. If the alpha-blocking agents were given at 9-12h or 18h, the onset of DNA synthesis was delayed. Phenoxybenzamine did not affect the induction of ornithine decarboxylase in intact rat livers by glucagon or growth hormone, but did inhibit induction by dexamethasone. The induction of ornithine decarboxylase produced by dexamethasone was inhibited by 17alpha-hydroxy-progesterone; this compound also blocked the induction of ornithine decarboxylase in livers of partially hepatectomized rats.  相似文献   

14.
Ontogenic relationships between levels of cyclic AMP-binding activity and protein kinase activity were examined in subcellular fractions of the cerebellum during the first 3 weeks of neonatal life. A progressive increase in cyclic AMP levels was paralleled by an increase in cyclic AMP bindign by the nuclear and cytosol fractions, but not by the mitochondrial or microsomal fractions. Utilization of heat-stable protein kinase inhibitor permtited distinction of the cyclic AMP-dependent from the cyclic AMP-independent form of the protein kinase population. Cyclic AMP-dependent protein kinase increased between days 4 and 20 to represent a progressively greater proportion of the protein kinase population. In all subcellular fractions alterations of cyclic AMP-dependent protein kinase during neonatal development paralleled changes in binding of cyclic AMP to protein in these fractions. In both the nuclear and cytosol fractions cyclic AMP-dependent protein kinase activity increased progressively between days 4 and 20, i.e. 64 ± 6 to 176 ± 16 and 79 ± 12 to 340 ± 12 pmol/min per mg protein, respectively. Cyclic AMP-dependent protein kinase activity in the mitochondrial fraction declined during the postnatal period studied, and in the microsomal fraction it rose to a non-sustained peak at 14 days and fell thereafter. Unlike the cyclic AMP-dependent form, cyclic AMP-independent protein kinase activity did not follow the ontogenetic pattern of cyclic AMP-binding activity. The specific activity of nuclear cyclic AMP-independent protein kinase did not change during days 4–20, and a non-sustained rise of cyclic AMP-independent protein kinase activity in both cytosol and microsomal fractions during the 7th–12th day tended to parallel more closely known patterns of postnatal proliferative growth. The findings reported herein indicate that the ontogenic pattern of cyclic AMP-dependent protein kinase varies between different subcellular fractions of the neonatal cerebellum, that these patterns parallel the changes in cyclic AMP-bidign activity, and suggest that the component parts of the cyclic AMP system may develop as a functional unit.  相似文献   

15.
The concentrations of putrescine, spermidine and spermine and the activities of ornithine decarboxylase (ODC) and S-adenosyl-L-methionine decarboxylase (SAM-D) were investigated in fast muscle subjected to chronic low-frequency electrical stimulation. Both ODC and SAM-D activities increased markedly between 18 and 48 h of stimulation. Changes in enzyme activities were followed by phasic elevations in the concentrations of putrescine, spermidine and spermine. Peak levels were reached first by putrescine at 3-4 days, followed by spermidine at about 9 days and then by spermine at about 11 days. A possible relationship was sought between these events and changes produced in vitro in the phosphorylation pattern of cytoplasmic proteins and the total activity of cyclic AMP-dependent protein kinase. However, during the early stages of stimulation, no prominent changes were seen either in the phosphorylation pattern or in the activity of cyclic AMP-dependent protein kinase. These characteristics changed significantly at a later stage (by 12 days of stimulation) and became indistinguishable from those of slow muscle by 3 to 4 weeks of stimulation.  相似文献   

16.
Nuclear protein kinases   总被引:8,自引:0,他引:8  
  相似文献   

17.
18.
Induction of ornithine decarboxylase has been correlated with the onset of cellular proliferation and cAMP production. Whether the resulting increases in polyamine levels are essential mediators of growth and/or differentiation or are merely incidental remains controversial. We have used FRTL-5 thyroid cells in culture to study the effects of three growth factors on ornithine decarboxylase activity. These factors [TSH, bovine calf serum, and 12-O-tetradecanoylphorbol-13-acetate (TPA)] are thought to act through different intracellular pathways. TSH stimulates cAMP production in thyroid cells, calf serum acts through ill-defined pathways to stimulate growth, and TPA is known to activate protein kinase C. Bovine calf serum and TSH acted synergistically to induce ornithine decarboxylase activity. Activity was maximal when the phosphodiesterase inhibitor, methyl isobutyl xanthine, was included. Individually, neither serum nor TSH was a potent stimulator of the enzyme. Ornithine decarboxylase mRNA was apparent on Northern blots as a doublet following one hour of exposure to these agents. TPA did not stimulate ornithine decarboxylase activity and had an inhibitory effect on enzyme induction by TSH and serum. Difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, inhibited growth induced by both TPA and TSH in putrescine-free medium. This effect was not apparent in medium containing 10(-5) M putrescine. The data indicate that, although intracellular levels of cyclic AMP regulate ornithine decarboxylase activity, a component in serum is necessary for significant induction of this enzyme. Factors stimulating growth by non-cyclic AMP-dependent pathways may act without apparently stimulating this enzyme, although polyamines appear to be essential for their growth stimulatory effects.  相似文献   

19.
The role of cyclic AMP in the regulation of hepatic ornithine decarboxylase (ODC) activity in the rat was studied in the whole animal and in the perfused organ. Dibutyryl cyclic AMP or butyrate given to intact rats increased ODC activity; this increase was abolished by hypophysectomy 1 h prior to administering ether compound. Administration of 1 mg 1-methyl-3-isobutylxanthine (MIX) to intact rats increased ODC activity within 4 hours whereas hypophysectomy 1 h before treatment prevented this increase. No change in hepatic cyclic AMP content was seen in either intact or hypophysectomized rats following MIX. Perfusion with 0.5 mM dibutyryl cyclic AMP decreased ODC activity in isolated livers whereas perfusion with 0.5 mM 8-bromocyclic GMP produced a small increase in ODC activity. These data suggest that the effect of dibutyryl cyclic AMP in intact animals may be a property of the butyrate and that this action as well as the action of MIX may be mediated through the permissive effect of pituitary and/or adrenal hormones. The normal hepatocyte does not increase its ornithine decarboxylase activity after direct exposure to dibutyryl cyclic AMP.  相似文献   

20.
The protein-bound cyclic AMP and the activity of cytosolic protein kinases in the presence and absence of cyclic AMP were determined in rat liver up to 2h after injection of glucagon. On the basis of the different salt-sensitivities of the activated cyclic AMP-dependent proteinkinases I and II, an activation of protein kinase II restricted to the high cyclic AMP concentrations present in the first 30 min after hormone injection was found. Essentially the same result was obtained by chromatographic analysis on DEAE-cellulose of liver cytosol from untreated rats and from rats killed at 2 and 60 min after glucagon injection. Protein kinase II activation was only detected at 2 min after injection. In contrast, the cyclic AMP-dependent protein kinase I was found to be nearly totally activated at 2 min and to be still almost as active at 60 min after the hormone stimulus, whereas the amount of bound cyclic AMP and the activation of total cytosolic protein kinases had fallen to two-thirds of their maximal values during this time period. A third cyclic AMP-independent protein kinase, which co-chromatographed with protein kinase type II, could be clearly distinguished from the two cyclic AMP-dependent kinases by use of the heat-stable inhibitor from bovine muscle, which totally inhibited the cyclic AMP-dependent enzymes, but stimulated the cyclic AMP-independent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号