首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The distribution of beta axons to muscle spindles in the tenuissimus and abductor digiti quinti medius (A.D.Q.M.) muscles of the hind limb of the cat was determined by testing the action of single motor axons, capable of producing extrafusal contraction, isolated in the ventral spinal roots on the discharges of individual muscle spindle primary sensory endings recorded in the dorsal spinal roots. The proportion of spindles with beta innervation was 41% in A.D.Q.M. and 30% in tenuissimus. The proportion of fast motor axons that were beta axons was 28% in the A.D.Q.M. and 11% in tenuissimus; usually each beta axon innervated a single spindle while no spindle received more than two beta axons. The beta axons were dynamic in nature and those to any one muscle tended to have slightly lower conduction velocities than the alpha axons though some overlap did occur. The extent to which beta axons can account for the fact that in isolated spindles axons selective to either nuclear bag or nuclear chain fibres are found in about equal proportions whereas a ratio of three static to one dynamic gamma axons is found electrophysiologically is discussed. An explanation for the low incidence of beta innervation previously found electrophysiologically and the considerably higher incidence found histologically is given.  相似文献   

2.
3.
The use of electronic devices with light-emitting screens has increased exponentially in the last decade. As a result, humans are almost continuously exposed to unintentional artificial light. We explored the independent and combined effects of two aspects of screen illumination, light wavelength, and intensity, on sleep, its biological regulation, and related functional outcomes. The 2 × 2 repeated-measure design included two independent variables: screen light intensity (low ([LI] versus high [HI]) and wavelength (short [SWL] versus long [LWL]). Nineteen participants (11F, 8M; mean age 24.3 [±2.8] years) underwent four light conditions, LI/SWL, HI/SWL, LI/LWL, and HI/LWL, in counterbalanced order. Each light exposure lasted for two hours (21:00–23:00), following which participants underwent an overnight polysomnography. On each experimental night, oral temperature and urine samples (for melatonin analysis) were collected at multiple time points. Each morning, participants filled out questionnaires and conducted a computerized attention task. Irrespective of light intensity, SWL illumination significantly disrupted sleep continuity and architecture and led to greater self-reported daytime sleepiness. SWL light also altered biological rhythms, subduing the normal nocturnal decline in body temperature and dampening nocturnal melatonin secretion. Light intensity seemed to independently affect sleep as well, but to a lesser degree. Both light intensity and wavelength negatively affected morning attention. In sum, light wavelength seems to have a greater influence than light intensity on sleep and a wide-range of biological and behavioral functions. Given the widespread use of electronic devices today, our findings suggest that screen light exposure at evening may have detrimental effects on human health and performance.  相似文献   

4.
《Current biology : CB》2021,31(15):3426-3432.e4
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

5.
Using antisera against the alpha, the beta or the complex of both chains of HLA-DR antigens, we have studied the role of individual chains of HLA-DR antigens in activation of T cells in autologous mixed lymphocyte reaction (AMLR). Alpha chain-specific antibody, not anti-beta chain serum prevented T cells from acquiring responsiveness to interleukin-2 (IL-2), suppressed the production of 1L-2, and inhibited the T cell proliferative response in both primary and secondary AMLR cultures. However, proliferation of already activated IL-2 reactive T cells supported by IL-2 was not affected by any of the four different types of anti-DR sera used. Fifty to sixty percent of T cells activated by AMLR or by PHA possessed DR antigens and functioned well as stimulator cells in secondary AMLR cultures. Moreover, the stimulatory activity of these DR-positive T cells was suppressed by the anti-alpha chain, not by the beta chain-specific antibody. Since continuous proliferation of T cells requires IL-2 and since nonactivated T cells are not sensitive to IL-2 and are unable to absorb this growth factor, we conclude the following: (1) The alpha, not the beta chain of HLA-DR antigens seems to be the structure responsible for enabling resting T cells to respond to IL-2 and induce production of IL-2 in AMLR. (2) Once T cells have acquired responsiveness to IL-2 and the growth factor has been produced, there is no further requirement for HLA-DR antigens, but the availability of IL-2 determines the level and extent of proliferation of IL-2 sensitive T cells.  相似文献   

6.
M Hahn  H Jckle 《The EMBO journal》1996,15(12):3077-3084
In vertebrate embryos, the homeobox gene goosecoid (gsc) is expressed in the gastrula organizer region and in later arising embryonic tissues including the foregut anlage. Ectopic expression and loss-of-function studies have demonstrated that Xenopus gsc elicits a dorsalizing activity that contributes to body axis formation. Here we report that the gsc gene is conserved in invertebrates. In Drosophila, D-gsc is expressed most strongly in the foregut anlage, which gives rise to the foregut proper and the stomatogastric nervous system (SNS). D-gsc expression overlaps with one of the three SNS precursor groups invaginating from the foregut anlage. Embryos mutant for D-gsc gastrulate normally but show disrupted invagination in the SNS primordium and lack one specific SNS ganglion. In addition, D-gsc mutant embryos show a less well defined defect in foregut arrangement. Our results indicate that this invertebrate homolog of gsc is not required for gastrulation but plays a role in neurogenesis in post-gastrula Drosophila embryos.  相似文献   

7.
Abstract

Because cats with pontile lesions exhibit an abnormal behavior that is under photoperiodic control, and because circadian rhythms are implicated in photoperiodic control mechanisms, an effort was made to detect circadian rhythms in the cat. Cats were isolated from all extraneous stimuli in soundproof chambers for extended periods of time. Photocells were used to monitor activity, eating and drinking in different LD cycles, in constant light at two intensities, and in constant dark. Freerunning circadian rhythms were found in the constant conditions, and entrained nocturnal patterns occurred in most of the LD cycles. The higher intensities of ambient illumination disrupted the freerunning rhythms. The freerunning rhythms were always greater than 24 h, ranging from 24.2 to 25 h. Measurements of food intake of cats living in a large colony room, obtained by weighing the food, revealed that a nocturnal pattern of entrainment was not present in the majority of the cats. Instead, most cats in the colony exhibited a random pattern of eating throughout the light and dark period of the LD cycle. However, the variation among the cats in the colony was considerable, extending from nocturnal to diurnal patterns of eating. A diurnal pattern of human activity was present in the colony and may account for the disruption of a basic nocturnal pattern. The presence of circadian rhythms in the cat leads us to consider the coincidence models for photoperiodic induction as possible explanations of the photoperiodic control of the lesion‐induced abnormal behavior.  相似文献   

8.
9.
Surgical isolation of the suprachiasmatic nuclei (SCN) within a hypothalamic island is reported to produce loss of circadian rhythmicity. The results have been interpreted to indicate that SCN efferents are necessary for the expression of circadian rhythms. It is not clear, however, whether the loss of circadian rhythms in behavioral responses following SCN isolation is attributable to transection of efferents, to loss of cells within the island, or to gliosis produced by the knife cut. To explore this issue, we examined locomotor activity and gonadal state of male golden hamsters housed in constant darkness (DD, with a dim red light for maintenance) for at least 10 weeks following isolation of the SCN from the rest of the brain by cuts by means of a Halasz wire microknife. Brain sections were immunocytochemically stained for the peptides vasoactive intestinal polypeptide (VIP), vasopressin (VP) or neurophysin II (NP II), and neuropeptide Y (NPY) to localize the SCN and to assess its viability, and for glial fibrillary acidic protein (GFAP) to delimit the border of the knife cut. Experimental animals with VIP and VP/NP II immunoreactivity in the SCN within the island retained free-running locomotor rhythms following transection of SCN efferents. Animals with cuts that failed to sever SCN efferents, and sham-operated animals (in which the Halasz knife was lowered but not rotated), also maintained circadian rhythmicity. Hamsters sustaining severe damage to the SCN showed disrupted locomotor activity. In those hamsters that retained circadian locomotor rhythmicity following SCN isolation, gonads failed to regress in DD, demonstrating the absence of an appropriate photoperiodic response. The results suggest a multiplicity of SCN coupling mechanisms in the control of circadian rhythms.  相似文献   

10.
This study characterized ventilation, the airflow waveform, and diaphragmatic activity in response to hypoxia in the intact adult cat during sleep and wakefulness. Exposure to hypoxia for up to 3 h caused sustained hyperventilation during both wakefulness and sleep. Hyperventilation resulted from significant increases in minute ventilation due to increases in both tidal volume and frequency. Diaphragmatic activity changed significantly from augmenting activity with little postinspiratory-inspiratory activity (PIIA) in normoxia to augmenting activity with increased PIIA in hypoxia. The increase in PIIA was least in rapid eye movement sleep. These changes in diaphragmatic activity were associated with changes in airflow waveforms in inspiration and expiration. We conclude that the ventilatory response to hypoxia involves a change in the output of the central pattern generator and that the change is dependent in part on the state of consciousness.  相似文献   

11.
The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.  相似文献   

12.
13.
The development of muscle spindles was studied using the tenuissimus muscle of the cat. Observations show that the intrafusal muscle fibers develop as two separate groups: one group represented by a single nuclear bag fiber while the second group comprises the second nuclear bag fiber in association with all the nuclear chain fibers. This grouping is most pronounced in the fetus and is clearly seen in neonatal kittens (i.e., up to 2 weeks of age). As the intrafusal fibers begin to separate from each other, the groupings become less noticeable, although this basic pattern is often retained in the adult. The pattern of intrafusal fiber grouping is most noticeable in the equatorial regions of the spindle and least noticeable in the polar regions. This is not the grouping of fibers which would have been expected from a consideration of existing reports on muscle spindles. The implications for spindle form and function are considered.  相似文献   

14.
There is growing evidence that alterations in the intrinsic circadian clock and sleep might affect the aging process. The rhesus monkey (Macaca mulatta) provides unique opportunities to explore the role of the clock in successful and unsuccessful physiological and cognitive aging in a diurnal primate with consolidated nighttime sleep, complex cognitive functions, long life span, and phylogenetic proximity to humans. A longitudinal study was conducted to characterize the effects of aging on the entrained and intrinsic circadian rhythms of activity, polysomnographic sleep patterns, and melatonin production in unrestrained male rhesus monkeys [6-9 (n=6) and 24-28 (n=4) years of age]. An age-dependent decline was found in the stability of circadian rhythms of activity and in peak melatonin levels. The range of individual intrinsic circadian periods (τ) is not age-dependent. Aged monkeys do not display clearly defined morningness-eveningness chronotypes and, unlike the young, show no correlation between the chronotype under entrained conditions and the length of intrinsic circadian period. The daily activity period (α) is reduced with age and this is associated with high day-to-day variability in sleep quantity and quality, fragmentation of nighttime sleep and daytime wakefulness, increased daytime sleep time, overall increase in stage 1 sleep, and reduced time spent in rapid-eye movement and slow-wave sleep. In the absence of environmental time cues, age-dependent changes in sleep and circadian rhythms are exacerbated and circadian patterns of sleep in young rhesus monkeys start resembling those in aged animals, together suggesting important role of circadian regulation in aging sleep phenotype. This first characterization of age-dependent changes in the intrinsic rhythms and sleep in rhesus monkeys, demonstrating major similarities to human aging phenotype, should assist in the search for the mechanisms involved and for effective prophylactic and therapeutic strategies.  相似文献   

15.
Chronotype can be classified as morningness types, people who prefer morning hours for their physical and mental activities; eveningness types, people who prefer the afternoon or evening hours; and intermediate types, those who show characteristics of both morningness and eveningness types. Attention deficit hyperactivity disorder (ADHD) has been linked with disturbances in chronotype, particularly increased eveningness. Despite the possibility of an association between chronotypes, sleep disturbances and ADHD symptoms, there is little evidence of this association considering the child population. The purpose of this study was to examine chronotype preferences in children aged between 7 and 12 years who were diagnosed as having ADHD in the context of sleep disturbances. The Schedule for Affective Disorders and Schizophrenia for School Age Children-Present and Lifetime Version, Conner’s Rating Scales, Children’s Sleep Habit Questionnaire and Children’s Chronotype Questionnaire were used for the evaluation of children with ADHD and healthy controls. The ADHD group was 73% combined-type, and the eveningness scores of the ADHD group (n = 52) were significantly higher than the control group (n = 52) (p < 0.01). There was a positive correlation between the higher scores of eveningness and total scores on resistance to sleep time (p < 0.09), respiratory problems during sleep and daytime sleepiness in the ADHD group. CSHQ total score was found to be a predictive factor for eveningness among children with ADHD (p < 0.01). These findings highlight possible reciprocal links between ADHD symptoms, sleep disturbances and chronotype in children aged 7–12 years, which might lead to individualized treatment options.  相似文献   

16.
This study examined the effects of clozapine on sleep-wakefulness profile in cats prepared for chronic recording of sleep. Clozapine in single dose (i.p.) of 5 mg/kg drastically reduced slow-wave sleep (SWS) and paradoxical sleep (PS), while wakefulness and drowsy pattern were increased. These changes lasted approximately 24 h and were followed by sleep recovery. PS had a priority of recovery. Some similarities between clozapine effects on sleep in cat and human were mentioned.  相似文献   

17.
ABSTRACT

The relevance of altered rest-activity rhythm (RAR) and light exposure rhythm (LER) in insomnia patients under natural conditions remains unclear. The aim of this study was to compare the parametric and nonparametric circadian variables of RAR and those of LER under natural conditions between insomnia patients and normal controls (NC) in a community-dwelling setting. The relationship of the nonparametric variables with sleep quality was also explored in both groups. Participants above 18 years old were recruited from three Public Health Centers in a rural area of Korea. Actigraphy (Actiwatch 2; Philips Respironics, Murrysville PA, USA) recording was conducted for 7 days. Subjects were eligible for our study if they had an insomnia disorder (ID) for at least 1 month. Actigraphy data of 78 normal control (NC) subjects (Age, 55.95 ± 13.22 years) and 104 patients with insomnia disorder (ID) (Age, 62.14 ± 12.34 years) were included for the analysis. Acrophases and amplitudes of RAR and LER were estimated using cosinor analysis. Interdaily stability (IS), intradaily variability (IV), and relative amplitude (RA) of these rhythms were determined using nonparametric methods. Parametric cosinor and nonparametric variables of RAR and LER were compared between the NC and ID groups. Generalized linear models (GLMs) were applied to evaluate the main effects of group and each nonparametric variable as well as a group by each variable interaction on the sleep onset latency (SOL), sleep efficiency (SE), and wake after sleep onset (WASO) reflecting sleep quality. Among sleep parameters, the ID group showed significantly lower SE and greater WASO than the NC group. There were no significant differences in the acrophase and amplitude of RAR and LER between the two groups. There were no significant differences in IV, IS, and RA of RAR and LER between the two groups either. GLMs for RAR revealed a significant interaction between the group and IS on the SOL (β = ?46.39, p < 0.01), indicating a negative relationship of the IS with SOL in ID unlike its positive relationship in NC. There were no significant main effects of IV on the SOL, SE, and WASO, but significant main effects of RA on the SE and WASO (β = 63.65 and β = ?221.43, respectively, p < 0.01). GLMs for LER revealed no significant main effects of IS, IV or RA on the SOL, SE, and WASO, but significant interactions between group and RA on the SE and WASO (β = 56.17 and β = ?171.93, respectively, p < 0.05), indicating a stronger positive relationship of the RA with SE in ID compared to NC, and a negative relationship of the RA with WASO in ID, unlike its positive relationship in NC. Although our study did not reveal group differences in circadian variables of RAR and LER, it suggested that the regularity of RAR could be positively associated with sleep initiation, while the robustness of LER could be positively associated with sleep maintenance in insomnia patients.  相似文献   

18.
We have previously shown that a human picornavirus echovirus 1 (EV1) is transported to caveosomes during 2 h together with its receptor alpha2beta1 integrin. Here, we show that the majority of early uptake does not occur through caveolae. alpha2beta1 integrin, clustered by antibodies or by EV1 binding, is initially internalized from lipid rafts into tubulovesicular structures. These vesicles accumulate fluid-phase markers but do not initially colocalize with caveolin-1 or internalized simian virus 40 (SV40). Furthermore, the internalized endosomes do not contain glycosylphosphatidylinositol (GPI)-anchored proteins or flotillin 1, suggesting that clustered alpha2beta1 integrin does not enter the GPI-anchored protein enriched endosomal compartment or flotillin pathways, respectively. Endosomes mature further into larger multivesicular bodies between 15 min to 2 h and concomitantly recruit caveolin-1 or SV40 inside. Cell entry is regulated by p21-activated kinase (Pak)1, Rac1, phosphatidylinositol 3-kinase, phospholipase C, and actin but not by dynamin 2 in SAOS-alpha2beta1 cells. An amiloride analog, 5-(N-ethyl-N-isopropanyl) amiloride, blocks infection, causes integrin accumulation in early tubulovesicular structures, and prevents their structural maturation into multivesicular structures. Our results together suggest that alpha2beta1 integrin clustering defines its own entry pathway that is Pak1 dependent but clathrin and caveolin independent and that is able to sort cargo to caveosomes.  相似文献   

19.
20.
Honey bee (Apis mellifera) workers emerge from the pupae with no circadian rhythms in behavior or brain clock gene expression but show strong rhythms later in life. This postembryonic development of circadian rhythms is reminiscent of that of infants of humans and other primates but contrasts with most insects, which typically emerge from the pupae with strong circadian rhythms. Very little is known about the internal and external factors regulating the ontogeny of circadian rhythms in bees or in other animals. We tested the hypothesis that the environment during early life influences the later expression of circadian rhythms in locomotor activity in young honey bees. We reared newly emerged bees in various social environments, transferred them to individual cages in constant laboratory conditions, and monitored their locomotor activity. We found that the percentage of rhythmic individuals among bees that experienced the colony environment for their first 48 h of adult life was similar to that of older sister foragers, but their rhythms were weaker. Sister bees isolated individually in the laboratory for the same period were significantly less likely to show circadian rhythms in locomotor activity. Bees experiencing the colony environment for only 24 h, or staying for 48 h with 30 same-age sister bees in the laboratory, were similar to bees individually isolated in the laboratory. By contrast, bees that were caged individually or in groups in single- or double-mesh enclosures inside a field colony were as likely to exhibit circadian rhythms as their sisters that were freely moving in the same colony. These findings suggest that the development of the circadian system in young adult honey bees is faster in the colony than in isolation. Direct contact with the queen, workers, or the brood, contact pheromones, and trophallaxis, which are all important means of communication in honey bees, cannot account for the influence of the colony environment, since they were all withheld from the bees in the double-mesh enclosures. Our results suggest that volatile pheromones, the colony microenvironment, or both influence the ontogeny of circadian rhythms in honey bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号