首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of continuous-wave (CW) and pulsed-wave (PW) radiofrequency radiation (RFR) in the microwave range on UV-induced DNA repair has been investigated in MRC-5 normal human diploid fibroblasts. RFR exposure at power densities of 1 (or 5) and 10 mW/cm2 gave a maximum specific absorption rate (SAR) (at 10 mW/cm2) of 0.39 +/- 0.15 W/kg for 350 MHz RFR, 4.5 +/- 3.0 W/kg for 850 MHz RFR, and 2.7 +/- 1.6 W/kg for 1.2 GHz RFR. RFR exposures for 1 to 3 h at 37 degrees C, in either continuous-wave or pulsed-wave modes, had no effect on the rate of repair replication label incorporated into preexisting UV-damaged DNA. RFR exposures (PW), with a constant medium temperature of 39 degrees C at 350 and 850 MHz during the repair period after UV damage, also had no effect. Assay for induction of repair synthesis by RFR exposure alone in non-UV irradiated cells was negative for the 350-, 850-, and 1200-MHz CW and PW RFR at 37 degrees C and the 350- and 850-MHz PW RFR at 39 degrees C. RFR does not induce DNA repair under these exposure conditions. In preliminary experiments--with the tissue culture medium maintained at 39 degrees C and RFR exposures (PW) at the frequencies of 350, 850, and 1200 MHz--no effect on incorporation of [3H]thymidine into DNA undergoing semiconservative synthesis was observed.  相似文献   

2.
Radiofrequency radiation is a physical agent that can influence the separation of protein and cells during liquid gel chromatography. In one experiment three globular proteins, bovine serum albumin, ovalbumin, and ribonuclease A were fractionated over crosslinked dextran in the presence of an oscillating electric field (10 MHz, 8500 V/m applied electric field strength). The electric field resulted in accelerated elution of each protein and this occurred in the absence of measurable gel heating (<0.01°C) and at low absorbed power (0.134 W/g). In a second experiment murine lymphocytes were fractionated over immunoglobulin-derived agarose during exposure to 2.5 GHz radiofrequency radiation at an applied electric field strength of 194 V/m. During the cell separation a significant fraction of immunoglobulin-positive lymphocytes experienced premature elution before their routine displacement by mouse immunoglobulin. Monitoring indicated that no gross heating occurred (<0.03°C) and that power absorption was small (0.117 W/kg). Polar biological macromolecules are known to undergo dielectric relaxation at specific electric field frequencies, and the chromatography results are interpreted in terms of a frequency-dependent Debye-Oncley model of interaction. The above findings indicate that radiofrequency radiation chromatography may have potential as a useful technique in the identification and separation of molecular species possessing different dielectric properties.  相似文献   

3.
In our laboratories we are conducting investigations of potential interactions between radio-frequency electromagnetic radiation (RFR) and chemicals that are toxic by different mechanisms to mammalian cells. The RFR is being tested at frequencies in the microwave range and at different power levels. We report here on the 1) ability of simultaneous RFR exposures to alter the distribution of cells in first and second mitoses from that after treatment by adriamycin alone, and 2) on the ability of simultaneous RFR exposure to alter the extent of sister chromatid exchanges (SCEs) induced by adriamycin alone. This chemical was selected because of its reported mechanism of action and because it is of interest in the treatment of cancer. In our studies, Chinese hamster ovary (CHO) cells were exposed for 2 h simultaneously to adriamycin and pulsed RFR at a frequency of 2,450 MHz and a specific absorption rate of 33.8 W/Kg. The maximal temperature (in the tissue-culture medium) was 39.7 +/- 0.2 degrees C. The experiments were controlled for chemical and RFR exposures, as well as for temperature. Verified statistically, the data indicate that the RFR did not affect changes in cell progression caused by adriamycin, and the RFR did not change the number of SCEs that were induced by the adriamycin, which adriamycin is known to affect cells by damaging their membranes and DNA.  相似文献   

4.
Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short‐term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague‐Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR‐dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR‐mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190–199, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

5.
Proflavin and microwave radiation: absence of a mutagenic interaction   总被引:3,自引:0,他引:3  
The potential ability of radiofrequency electromagnetic radiation (RFR) in the microwave range to induce mutagenesis, chromosomal aberrations, and sister chromatid exchanges in mammalian cells is being explored in our laboratories. In addition, we have also been examining the ability of simultaneous exposure to RFR and chemical mutagens to alter the genotoxic damage induced by chemical mutagens acting alone. We have performed experiments to determine whether there is an interaction between 2.45-GHz, pulsed-wave, RFR and proflavin, a DNA-intercalating drug. The endpoint studied was forward mutation at the thymidine kinase locus in L5178Y mouse leukemic cells. Any effect on the size distribution of the resulting colonies of mutated cells was also examined. The exposures were performed at net forward powers of 500 or 600 W, resulting in a specific absorption rate (SAR) of approximately 40 W/kg. The culture-medium temperature reached a 3 degrees C maximal increase during the 4-h exposure; appropriate 37 degrees C and convection-heating temperature controls (TC) were performed. In no case was there any indication of a statistically significant increase in the induced mutant frequency due to the simultaneous exposure to RFR and proflavin, as compared with the proflavin exposures alone. There was also no indication of any change in the colony-size distribution of the resulting mutant colonies, neither, and there was no evidence in these experiments of any mutagenic action by the RFR exposure alone.  相似文献   

6.
To compare the effects of exposure to a near-resonant frequency of microwaves at two orientations with a higher frequency exposure, five rhesus monkeys were exposed for 4 hr to 225 MHz, electric field oriented parallel to the long axis of the body (225 MHz-E), and to 225 MHz, magnetic field orientation (225 MHz-H), or to 1290 MHz, electric field orientation. On a separate occasion, the monkeys were exposed at night to 225 MHz-E. Exposures were conducted with the animal chair restrained in an anechoic chamber with rectal temperature continuously monitored. Blood samples were taken hourly during the 225-MHz-E exposures for cortisol analysis. The power densities used were 0, 1.2, 2.5, 5.0, 7.5, 10.0, and 15.0 mW/cm2 for 225 MHz-E (day), 0 and 5 mW/cm2 (225 MHz-E night and 225 MHz-H), and 0, 20, 28, and 38 mW/cm2 (1290 MHz). The monkeys were unable to tolerate exposure at power densities equal to or greater than 7.5 mW/cm2 (5.1 W/kg) at 225 MHz-E for longer than 90 min. The criterion for tolerance was that the rectal temperature would not exceed 41.5 degrees C. Average rectal temperature increases for day exposure to 225 MHz-E were 0.4 and 1.7 degrees C for 4-hr exposures to 2.5 and 5.0 mW/cm2 (1.7 and 3.4 W/kg). No changes in circulating cortisol levels occurred during any exposures to 5 mW/cm2 or less. Night exposures to 5 mW/cm2 (3.4 W/kg) at 225 MHz-E raised mean rectal temperature 2.1 degrees C. Exposure to 5 mW/cm2 (1.2 W/kg) at 225 MHz-H for 4 hr resulted in a 0.2 degree rise in mean rectal temperature. For 4 hr of 1290-MHz exposure to 20, 28, or 38 mW/cm2 (2.9, 4.0, and 5.4 W/kg), the mean body temperature increases were 0.4, 0.7, and 1.3 degrees C, respectively. The degree of hyperthermia caused by radiofrequency (rf) exposure was shown to be frequency and orientation dependent for equivalent power densities of exposure.  相似文献   

7.
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.  相似文献   

8.
Microwaves (2450 MHz, 60 mW/g) are shown to result in the release or shedding of at least 11 low-molecular-weight proteins (less than or equal to 31,000 Da) from rabbit erythrocytes maintained in physiological buffer. Protein release was detected by gel electrophoresis of cell-free supernatants using sensitive silver staining. This release is oxygen dependent and occurs in 30 min for exposures conducted within the special temperature region of 17-21 degrees C, which is linked to a structural or conformational transition in the cell membrane. Shedding of 26,000 and 24,000 Da proteins is unique to microwave treatment, with enhanced release of 28,000 and less than or equal to 15,000 Da species during microwave compared to sham exposures. Two-dimensional isoelectric focusing further reveals that proteins of less than or equal to 14,000 Da shed during microwave treatment exhibit a pI of 6.8-7.3 not seen in sham-treated cells. Treatment of erythrocytes with a serine-directed protease inhibitor does not prevent release of proteins. However, when erythrocytes are maintained at 17-21 degrees C by conventional heating in the absence of divalent cations, release of 28,000-31,000 and less than or equal to 14,000 Da components is detected. This indicates that cation-bridge stability may be important for release of these proteins. The above results provide evidence that microwaves alter erythrocyte protein composition at temperatures linked to a transition in the cell membrane and that destabilization of salt bridges may play a role in an interaction mechanism for protein release.  相似文献   

9.
Peripheral blood samples collected from four healthy nonsmoking human volunteers were diluted with tissue culture medium and exposed in vitro for 24 h to 847.74 MHz radiofrequency (RF) radiation (continuous wave), a frequency employed for cellular telephone communications. A code division multiple access (CDMA) technology was used with a nominal net forward power of 75 W and a nominal power density of 950 W/m(2) (95 mW/cm(2)). The mean specific absorption rate (SAR) was 4.9 or 5.5 W/kg. Blood aliquots that were sham-exposed or exposed in vitro to an acute dose of 1.5 Gy of gamma radiation were included in the study as controls. The temperatures of the medium during RF-radiation and sham exposures in the Radial Transmission Line facility were controlled at 37 +/- 0.3 degrees C. Immediately after the exposures, lymphocytes were cultured at 37 +/- 1 degrees C for 48 or 72 h. The extent of genetic damage was assessed from the incidence of chromosome aberrations and micronuclei. The kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation-exposed and sham-exposed lymphocytes with respect to mitotic indices, frequencies of exchange aberrations, excess fragments, binucleate cells, and micronuclei. The response of gamma-irradiated lymphocytes was significantly different from that of both RF-radiation-exposed and sham-exposed cells for all of these indices. Thus there was no evidence for induction of chromosome aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 847.74 MHz RF radiation (CDMA) at SARs of 4.9 or 5.5 W/kg.  相似文献   

10.
Whole human blood was exposed or sham-exposed in vitro for 2 h to 27 or 2,450 MHz radio-frequency electromagnetic (RF) radiation under isothermal conditions (i.e., 37 +/- 0.2 degrees C). Immediately after exposure, mononuclear cells were separated from blood by Ficoll density-gradient centrifugation and cultured for 3 days at 37 degrees C with or without mitogenic stimulation by phytohemagglutinin (PHA). Lymphocyte proliferation was assayed at the end of the culture period by 6 h of pulse labeling with 3H-thymidine (3H-TdR). Exposure to radiation at either frequency at specific absorption rates (SARs) below 50 W/kg resulted in a dose-dependent, statistically significant increase of 3H-TdR uptake in PHA-activated or unstimulated lymphocytes. Exposure at 50 W/kg or higher suppressed 3H-TdR uptake relative to that of sham-exposed cells. There were no detectable effects of RF radiation on lymphocyte morphology or viability. Notwithstanding the characteristic temperature dependence of lymphocyte activation in vitro, the isothermal exposure conditions of this study warrant the conclusion that the biphasic, dose-dependent effects of the radiation on lymphocyte proliferation were not dependent on heating.  相似文献   

11.
Two studies were performed to determine if repeated exposure of the avian egg to microwaves can alter metabolism, temperature, and growth rate of embryos. Another aim was to supplement conventional heating with microwave heating and provide an optimal temperature for growth. Japanese quail (Coturnix coturnix japonica) eggs were exposed from day 1 through 15 of incubation (8 h/day) to sham or microwave (2,450 MHz) irradiation. Microwave exposures were at two power densities, 5 or 20 mW/cm2, and at three ambient temperatures (Tas), 30.0, 33.1, or 35.4 degrees C. Specific absorption rates for unincubated and 15-day-old incubated eggs were, respectively, 0.76 and 0.66 W kg-1 mW-1 cm-2 (i.e., 3.8 and 3.3 W/kg at 5 mW/cm2 and 15.2 and 13.2 W/kg at 20 mW/cm2). Eggs were concurrently sham exposed at each of five Tas, ranging from 27.9 to 37.5 degrees C. Tests were conducted during the 16th day of incubation (i.e., 1 day post-treatment), in the absence of microwaves, to determine metabolic rate of embryos and internal and external egg temperatures at different Tas. Repeated exposures to microwaves at 5 and 20 mW/cm2 at the same Ta (30 degrees C) increased wet-embryo mass on the 16th day by an average, respectively, of 9% and 61% when compared with predicted masses for embryos exposed at the same Ta in the absence of microwave radiation. There was no reliable indication, from post-treatment tests and comparisons with control embryos of similar mass, that repeated exposure to microwave radiation resulted in abnormal physiological development. Microwave radiation can be used to increase egg temperature and embryonic growth rate at Tas below normal incubation level without altering basic metabolic and thermal characteristics of the developing bird.  相似文献   

12.
The heat uptake that resulted from immersing the hand and wrist into a water-filled calorimeter maintained at temperatures between 37-40 degrees C was measured under standard conditions in a group of eight subjects of either sex. The rate of heat transfer (W) increased exponentially with temperature and was a function of hand or body size and age, but not sex. The heat transfer rate normalized to hand mass (W.kg-1) was determined by temperature and age: best-fit mean values (and 95% confidence limits of the population) were 6.0 W.kg-1 (3.2-11.2 W.kg-1) at an immersion temperature of 37 degrees C and 25.4 W.kg-1 (13.7-47.0 W.kg-1) at 40 degrees C. The application of these results to limits on specific energy absorption rate induced in the hands and wrists by radiofrequency dielectric heat sealer welders is discussed.  相似文献   

13.
Summary Ketamine-anesthetized Sprague-Dawley rats were exposed in both E and H orientations to far-field 2.45-GHz continuous-wave radiofrequency radiation (RFR) at a power density of 60 mW/cm2 (whole-body average specific absorption rate of 14 W/kg). Intermittent exposures were performed in both orientations in the same animal to repeatedly increase colonic temperature from 38.5 to 39.5° C. Tympanic, subcutaneous (sides toward and away from RFR source), and colonic temperature, ECG, arterial blood pressure, and respiratory rate were continuously recorded. The pattern of heat distribution within the animal and the physiological responses were significantly different between E-and H-orientation exposure. Irradiation in E orientation resulted in greater peripheral and tympanic heating, while irradiation in H orientation resulted in greater core heating. Heart rate and blood pressure increased significantly during irradiation and returned to baseline levels when exposure was discontinued; the increases were significantly greater in E than in H orientation. Respiratory rate increased significantly during irradiation in H, but not in E orientation. The physiological responses could have been influenced by the different levels or rates of subcutaneous and tympanic heating, or the differential between core and peripheral heating during E- and H-orientation irradiation. These results suggest that, when interpreting results of RFR exposure, animal orientation during irradiation must be considered.  相似文献   

14.
To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN(R) (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37 degrees C +/- 0.3 degrees C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.  相似文献   

15.
As part of a comprehensive investigation of the potential genotoxicity of radiofrequency (RF) signals emitted by cellular telephones, in vitro studies evaluated the induction of DNA and chromosomal damage in human blood leukocytes and lymphocytes, respectively. The signals were voice modulated 837 MHz produced by an analog signal generator or by a time division multiple access (TDMA) cellular telephone, 837 MHz generated by a code division multiple access (CDMA) cellular telephone (not voice modulated), and voice modulated 1909.8 MHz generated by a global system of mobile communication (GSM)-type personal communication systems (PCS) cellular telephone. DNA damage (strand breaks/alkali labile sites) was assessed in leukocytes using the alkaline (pH>13) single cell gel electrophoresis (SCG) assay. Chromosomal damage was evaluated in lymphocytes mitogenically stimulated to divide postexposure using the cytochalasin B-binucleate cell micronucleus assay. Cells were exposed at 37+/-1 degrees C, for 3 or 24 h at average specific absorption rates (SARs) of 1.0-10.0 W/kg. Exposure for either 3 or 24 h did not induce a significant increase in DNA damage in leukocytes, nor did exposure for 3 h induce a significant increase in micronucleated cells among lymphocytes. However, exposure to each of the four RF signal technologies for 24 h at an average SAR of 5.0 or 10.0 W/kg resulted in a significant and reproducible increase in the frequency of micronucleated lymphocytes. The magnitude of the response (approximately four fold) was independent of the technology, the presence or absence of voice modulation, and the frequency (837 vs. 1909.8 MHz). This research demonstrates that, under extended exposure conditions, RF signals at an average SAR of at least 5.0 W/kg are capable of inducing chromosomal damage in human lymphocytes.  相似文献   

16.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

17.
The purpose of this study was to determine the effects of exposure orientation relative to electric and magnetic fields (E and H fields) on the thermal, cardiovascular, and respiratory changes in ketamine-anesthetized rats exposed to far-field, continuous-wave, 9.3-GHz radiofrequency radiation (RFR). Irradiation (specific absorption rate = 12.5 W/kg in both orientations; power levels of 79 and 59 mW/cm2 in E and H orientations, respectively) was conducted to produce 1 degree C colonic temperature changes (38.5 to 39.5 degrees C). During experimentation, arterial blood pressure and respiratory rate, colonic (Tc) tympanic (Tt) left and right subcutaneous (Tsl & Tsr) (sides toward and away from RFR source), and tail temperatures (Tta) were continuously recorded. The Tsr change during E-orientation exposure was considerably less than the Tc change; the Tt and Tsr (H-orientation) changes approximated the Tc increase; and the Tsl and Tta changes (both orientations) were considerably greater than the Tc increase. The Tt and Tsl increases were virtually equal under the two exposure conditions; however, the Tsr increase was significantly greater during H-orientation irradiation, and the Tta increase was significantly greater during E-orientation exposure. Heart rate and mean arterial pressure increased significantly during irradiation; however the cardiovascular responses were not affected by exposure orientation. The latter findings at 9.3 GHz contrast with the marked cardiovascular response differences between E- and H-orientation exposure noted during previous studies at 0.7 to 2.45 GHz.  相似文献   

18.
Hydrolysis of glycerol trioleate by human leucocytes was characterized and the enzymes responsible for this activity were obtained in a purified form by means of gel chromatography on Sephadex G-100 as well as by zonal ultracentrifugation followed by gel chromatography. The activity is localized in the granule fraction of leucocytes (15 000 X g, 20 min) and shows a sharp pH optimum at pH 5.25. As judged from the elution profile obtained by gel chromatography, two proteins are likely to contribute to the hydrolysis of glycerol trioleate. The approximate molecular weights of the two enzymes are 74 100 and 60 300, respectively. The activity is reduced in the presence of NaCl, KCl, CaCl2 as well as of p-hydroxymercuribenzoate. The enzymes are stable at -25 degrees C but loose about 50% of their activity within 48 h at 4 degrees C.  相似文献   

19.
A simple, economical and rapid affinity chromatography procedure with dyes as the ligand has been described for the one-step purification of a cold-adapted lactate dehydrogenase. Non-specific elution of Procion blue H-ERD-modified Sepharose yielded homogeneous preparations of lactate dehydrogenase both in column based procedures and in batch wise operations. Low operational temperatures resulted in the enhanced binding of the enzyme to the blue dye. The dissociation constants of the enzyme-dye complexes were 7.2 +/- 0.2 microM and 11.2 +/- 0.2 microM at 5 degrees C and 20 degrees C respectively.  相似文献   

20.
The partial purification of a protein fraction inhibiting pyruvate kinase isoenzymes is described. The fraction was isolated from the (NH4)2SO4 step of the purification procedure for pyruvate kinase isoenzymes from chicken liver (Eigenbrodt, E. & Schoner, W. (1977) Hoppe-Seyler's Z. Physiol. Chem. 358, 1033-1046) by extraction with 1N NaOH, acidification to pH 3, ethanol precipitation and chromatography of the supernatant on DEAE-cellulose. The inhibitor fraction was further purified by disc gel electrophoresis using a gel gradient from 10 to 25%; this procedure separated activating proteins from the inhibitor fraction. The inhibitor fraction inhibited the pyruvate kinase isoenzymes from chicken in the sequence of decreasing effect: M2 greater than L greater than M1. The inhibition was due to a decrease in the affinity for phosphoenolpyruvate. The inhibitor is stable against heating for 5 min in 1% sodium dodecyl sulfate at 100 degrees C; it is destroyed by pepsin digestion. The inhibitor fraction could be purified further only by dodecyl sulfate gel electrophoresis. This resulted in the separation of 2 inhibitors (Mr = 33,500 +/- 8500 and ca. 5000), an activator (Mr = 15,100 +/- 5200), and an unidentified protein (Mr = 27,000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号