首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteoglycan subunits from human articular cartilage were fractionated by caesium sulphate density gradient centrifugation. A single heterogeneous population of molecules was produced whose average density decreased with increasing age of the individual from which they were obtained. At no density did the carbohydrate composition of any adult fraction resemble that of any newborn fraction, although there was considerable overlap in density. However, there was a similarity in amino acid composition between the most dense proteoglycans from the adult and those of least density from the newborn. The carbohydrate content of a 2-year-old proteoglycan was intermediate in composition, with high density fractions resembling the newborn and low density fractions resembling the adult. In addition, the proteoglycans of lowest density in both the newborn and two year preparations showed additional bands on agarose/polyacrylamide gel electrophoresis resembling the adult material. These results indicate that while a core protein of adult composition may occur in the juvenile proteoglycan it need not necessarily be glycosylated in an adult manner, suggesting that glycosylation is to some extent independent of the origin of core protein heterogeneity.  相似文献   

2.
Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 X 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 X 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.  相似文献   

3.
The distribution of small proteoglycans of high relative electrophoretic mobility in cartilage of various species and of different ages was studied. Proteoglycans extracted by 4 M guanidinium chloride were purified by ion-exchange chromatography and assessed by gel electrophoresis. Proteoglycans fractionated by equilibrium density gradient centrifugation under ‘dissociative’ conditions were similarly purified and assessed. A rapid migrating population was found in articular cartilages of young humans, baboons, calfs, pigs, rabbits, rats, chickens and in mandibular and vertebral cartilages of dog-fish. It was not detected in unfractionated proteoglycans extracted from fetal rat, pig, calf, baboon and human cartilages. In baboon and human fetal cartilages of advanced gestational age, however, small amounts of the rapid population were present being detected in the low density fractions of dissociative gradients. The rapid migrating population was not found either in unfractionated or in fractionated proteoglycans obtained from articular cartilages of humans aged over 40. It was absent from human osteoarthritic cartilages but was detected even at advanced age in cartilages covering osteophytes.  相似文献   

4.
Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.  相似文献   

5.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

6.
7.
Monoclonal antibodies produced against chondroitinase-treated human adult cartilage proteoglycans were selected for their ability to recognize epitopes on native proteoglycans. Binding analyses revealed that four of these monoclonal antibodies (BCD-4, BCD-7, EFG-4 and KPC-190) each recognized a different epitope on the same proteoglycan molecule which represents a subpopulation of a high buoyant density (D1) fraction of human articular cartilage proteoglycans (10, 30, 50 and 60% in fetal-newborn, 1.5 years old, 15 years old and 52-56 years old cartilages, respectively). Analysis of epitope specificities revealed that BCD-7 and EFG-4 monoclonal antibodies recognized epitopes on proteoglycan monomer which are associated with the protein structure in that they are sensitive to cleavage by Pronase, papain and alkali treatment and do not include keratan sulphate, chondroitin sulphate or oligosaccharides. The BCD-4 and KPC-190 epitopes also proved to be sensitive to Pronase or papain digestion or to alkali treatment, but keratanase or endo-beta-galactosidase also reduced the immunoreactivity of these epitopes. These observations indicate that the BCD-4 and KPC-190 epitopes represent peptides substituted with keratan sulphate or keratan sulphate-like structures. The BCD-4 epitope is, however, absent from a keratan sulphate-rich fragment of human adult proteoglycan, while the other three epitopes were detected in this fragment. None of these four epitopes were detected in the link proteins of human cartilage, in the hyaluronic acid-binding region of human newborn cartilage proteoglycan, in Swarm rat chondrosarcoma proteoglycan, in chicken limb bud proteoglycan monomer and in the small dermatan sulphate-proteoglycan of bovine costal cartilage. EFG-4 and KPC-190 epitopes were not detected in human fetal cartilage proteoglycans, although fetal molecules contained trace amounts of epitopes reactive with BCD-4 and BCD-7 antibodies.  相似文献   

8.
Abstract: Retinas were labeled in culture with [3H]glucosamine or [3H]leucine and [35S]sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sul-fated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.  相似文献   

9.
Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI.  相似文献   

10.
11.
The relative contents of chondroitin 4- and 6-sulfates in cartilages of different human bones are reported. Articular and vertebral body cartilages contain almost exclusively chondroitin 6-sulfate, whereas growth and subarticular cartilages contain nearly equal amounts of chondroitin 4-sulfate and chondroitin 6-sulfate. Adult cartilages, where the calcification process is complete, contain only chondroitin 6-sulfate. These results that chondroitin 4-sulfate may be an important component for the calcification process, whereas chondroitin 6-sulfate seems to be related to the integrity of the articular surfaces. A chemical defect of chondroitin 6-sulfate in a new mucopolysaccharidosis, characterized by platyspondyly and irregularities of articular surfaces, is in agreement with these results.  相似文献   

12.
13.
14.
Natural and beneficial associations between plants and bacteria have demonstrated potential commercial application for several agricultural crops. The sunflower has acquired increasing importance in Brazilian agribusiness owing to its agronomic characteristics such as the tolerance to edaphoclimatic variations, resistance to pests and diseases, and adaptation to the implements commonly used for maize and soybean, as well as the versatility of the products and by-products obtained from its cultivation. A study of the cultivable bacteria associated with two sunflower cultivars, using classical microbiological methods, successfully obtained isolates from different plant tissues (roots, stems, florets, and rhizosphere). Out of 57 plantgrowth- promoting isolates obtained, 45 were identified at the genus level and phylogenetically positioned based on 16S rRNA gene sequencing: 42 Bacillus (B. subtilis, B. cereus, B. thuringiensis, B. pumilus, B. megaterium, and Bacillus sp.) and 3 Methylobacterium komagatae. Random amplified polymorphic DNA (RAPD) analysis showed a broad diversity among the Bacillus isolates, which clustered into 2 groups with 75% similarity and 13 subgroups with 85% similarity, suggesting that the genetic distance correlated with the source of isolation. The isolates were also analyzed for certain growth-promoting activities. Auxin synthesis was widely distributed among the isolates, with values ranging from 93.34 to 1653.37 microM auxin per microng of protein. The phosphate solubilization index ranged from 1.25 to 3.89, and siderophore index varied from 1.15 to 5.25. From a total of 57 isolates, 3 showed an ability to biologically fix atmospheric nitrogen, and 7 showed antagonism against the pathogen Sclerotinia sclerotiorum. The results of biochemical characterization allowed identification of potential candidates for the development of biofertilizers targeted to the sunflower crop.  相似文献   

15.
The relative contents of chondroitin 4- and 6-sulfates in cartilages of different human bones are reported. Articular and vertebral body cartilages contain almost exclusively chondroitin 6-sulfate, whereas growth and subarticular cartilages contain nearly equal amounts of chondroitin 4-sulfate and chondroitin 6-sulfate. Adult cartilages, where the calcification process is complete, contain only chondroitin 6-sulfate. These results suggest that chondroitin 4-sulfate may be an important component for the calcification process, whereas chondroitin 6-sulfate seems to be related to the integrity of the articular surfaces. A chemical defect of chondroitin 6-sulfate in a new mucopolysaccharidosis, characterized by platyspondyly and irregularities of articular surfaces, is in agreement with these results.  相似文献   

16.
Pieces of adult human articular cartilage and chondrosarcoma were incubated in the presence of [35S]sulphate. After continuous or pulse-change incorporation of radioactivity, proteoglycans were extracted with 4.0 M-guanidinium chloride, purified by equilibrium density-gradient centrifugation and fractionated by gel chromatography. A comparison of the results suggests that the formation of stable aggregates occurs at a lower rate in articular cartilage than in chondrosarcoma.  相似文献   

17.
Non-aggregating dermatan sulphate proteoglycans can be extracted from both fetal and adult human articular cartilage. The dermatan sulphate proteoglycans appear to be smaller in the adult, this presumably being due to shorter glycosaminoglycan chains, and these chains contain a greater proportion of their uronic acid residues as iduronate. Both the adult and fetal dermatan sulphate proteoglycans contain a greater amount of 4-sulphation than 6-sulphation of the N-acetylgalactosamine residues, in contrast with the aggregating proteoglycans, which always show more 6-sulphation on their chondroitin sulphate chains. In the fetus the major dermatan sulphate proteoglycan to be synthesized is DS-PGI, though DS-PGII is synthesized in reasonable amounts. In the adult, however, DS-PGI synthesis is barely detectable relative to DS-PGII, which is still synthesized in substantial amounts. Purification of the dermatan sulphate proteoglycans from adult cartilage is hampered by the presence of degradation products derived from the large aggregating proteoglycans, which possess similar charge, size and density properties, but which can be distinguished by their ability to interact with hyaluronic acid.  相似文献   

18.
Electron microscopic immunolocalization and radioimmunoassay have been used to determine the variation with depth of the hyaluronate-binding region of proteoglycan in articular cartilage. The cartilage was cut into serial sections from the articular surface to the bony margin, the proteoglycans were extracted from each section and determined by radioimmunoassay using antibodies raised against proteoglycan binding region. Proteoglycans were found to be most abundant in the middle zone and least abundant near the articular surface. Biochemical analysis for hexuronate in the same extracts showed a distribution of proteoglycan in agreement with these and other published results. The binding region antiserum was used for electron microscopic immunolocalization of proteoglycan with ultrathin sections of cartilage embedded in Lowicryl K4M resin. After digestion of the sections with chondroitinase ABC, the proteoglycans were localized using the antiserum and protein A-coated gold particles as immunolabel. The density of labeling was quantified using a Magiscan image analysis system. Throughout the depth of the cartilage matrix labeling was higher in the pericellular regions compared to the intercellular regions, and variation of the amount of immunolabel with depth was found to show a good correlation with the results from radioimmunoassay. Intracellular labeling of proteoglycans was mainly found over the Golgi region and in membrane-bound (secretory) vesicles.  相似文献   

19.
The complete amino acid sequence of human A-I has been determined by manual and automated Edman degradation of intact and peptide fragments of A-I. A-I is a single chain protein of 243 residues with the following amino acid composition: Asp16, Asn5, Thr10, Ser15, Glu27, Gln19, Pro10, Gly10, Ala19, Val13, Met3, Leu37, Tyr7, Phe6, Trp4, Lys21, His5, and Arg16. The amino acid sequence contains no linear segments of hydrophobic or hydrophilic residues. A detailed correlation of the amino acid sequence, conformation, and self association of A-I will add further insight into the molecular mechanisms involved in protein-protein and protein-lipid interactions.  相似文献   

20.
Relatively homogeneous fractions of proteoglycan fragments were prepared from tryptic digests of the 4M-guanidinium chloride extract of bovine nasal cartilage. Glycosaminoglycan-containing fragments were separated from non-proteoglycan contaminants by ion-exchange chromatography and fractionated by equilibrium density-gradient centrifugation under dissociative conditions. The fractions of highest buoyant density were chromatographed on a column of Sepharose 4B, digested with chondroitinase ABC and chromatographed on a column of Sepharose 6B, yielding two distinct fractions: fraction B/6B-4 contained fragments from the chondroitin sulphate-bearing region of the proteoglycan monomer, and fraction B/6B-2 fragments from the keratan sulphate-rich region, most probably including a chondroitin sulphate-bearing monomer segment. By dansyl chloride analysis, fraction B/6B-2 had alanine and leucine as sole and fraction B/6B-4 had isoleucine and leucine as greatly predominant N-terminal amino acids, indicative of the relative homogeneity of these preparations of cartilage proteoglycan monomer fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号