首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Mosses and other bryophytes are vital components of forests, because they sustain a tremendous diversity of invertebrates and influence significant ecological functions. There have been few studies on moss population diversity in Southeast Asia, despite the escalating deforestation in this region of rich biodiversity. The genetic diversity of the tropical moss Acanthorrhynchium papillatum (Harv.) Fleisch., collected from forested areas in Singapore and Peninsular Malaysia, was elucidated using eight microsatellite markers developed for this species. Significant levels of allelic and haplotypic diversity were observed among clumps of the moss. Differences in allelic richness and genotypic diversity among the populations were higher in less disturbed forests compared to the more disturbed areas, suggesting that genetic diversity is affected by habitat quality. Genetic diversity levels within the clumps studied were low, indicating that vegetative reproduction was more important within clumps than sexual reproduction. However, multilocus genotypes of samples within the clumps studied were not all alike, providing evidence of microsatellite mutation or of occasional sexuality. Despite the isolation of populations, A. papillatum can introduce genetic variability by mutation among vegetatively propagated individuals. This study provides baseline information on the genetic diversity of A. papillatum tropical rain forests.  相似文献   

2.
3.
IAN J. WANG 《Molecular ecology》2009,18(18):3847-3856
Environmental variables can strongly influence a variety of intra- and inter-population processes, including demography, population structure and gene flow. When environmental conditions are particularly harsh for a certain species, investigating these effects is important to understanding how populations persist under difficult conditions. Furthermore, species inhabiting challenging environments present excellent opportunities to examine the effects of complex landscapes on population processes because these effects will often be more pronounced. In this study, I use 16 microsatellite loci to examine population structure, gene flow and demographic history in the black toad, Bufo exsul , which has one of the most restricted natural ranges of any amphibian. Bufo exsul inhabits four springs in the Deep Springs Valley high desert basin and has never been observed more than several meters from any source of water. My results reveal limited gene flow and moderately high levels of population structure ( F ST = 0.051–0.063) between all but the two closest springs. I found that the geographic distance across the arid scrub habitat between springs is significantly correlated with genetic structure when distance accounts for topography and barriers to dispersal. I also found very low effective population sizes ( N e = 7–30) and substantial evidence for historical population bottlenecks in all four populations. Together, these results suggest that the desert landscape and B.   exsul 's high habitat specificity contribute significantly to population structure and demography in this species and emphasize the importance of considering behavioural and landscape data in conservation genetic studies of natural systems.  相似文献   

4.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.  相似文献   

5.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.  相似文献   

6.
In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion.  相似文献   

7.
Despite geographical isolation and widespread phenotypic polymorphism, previous population genetic studies of Arctic charr, Salvelinus alpinus , have detected low levels of intra- and interpopulation variation. In this study, two approaches were used to test the generality of low genetic diversity among 15 Arctic charr populations from three major drainages of the central Alpine region of Europe. First, a representative subsample of each drainage was screened by PCR–RFLP analysis of mtDNA using 31 restriction enzymes. All individuals but one shared an identical haplotype. In contrast, microsatellite DNA variation revealed high levels of genetic diversity within and among populations. The number of alleles per locus ranged from six to 49, resulting in an overall expected heterozygosity from 0.72 ± 0.09 to 0.87 ± 0.04 depending on the locus. Despite evidence for fish transfers among Alpine charr populations over centuries, genetic diversity was substantially structured, as revealed by hierarchical Φ statistics. Eighteen per cent of total genetic variance was apportioned to substructuring among Rhône, Rhine, and Danube river systems, whereas 19% was due to partitioning among populations within each drainage. Cluster analyses corroborated these results by drainage-specific grouping of nonstocked populations, but also revealed damaging effects of stocking practices in others. However, these results suggest that long-term stocking practices did not generally alter natural genetic partitioning, and stress the importance of considering genetic diversity of Arctic charr in the Alpine region for sound management. The results also refute the general view of Arctic charr being a genetically depauperate species and show the potential usefulness of microsatellite DNAs in addressing evolutionary and conservation issues in this species.  相似文献   

8.
Species often occur in subdivided populations as a consequence of spatial heterogeneity of the habitat. To describe the spatial organization of subpopulations, existing theory proposes three main population models: patchy population, metapopulation and isolated populations. These models differ in their predicted levels of connectivity among subpopulations, and in the risk that a subpopulation will go extinct. However, spatially discrete subpopulations are commonly considered to be organized as metapopulations, even though explicit tests of metapopulation assumptions are rare. Here, we test predictions of the three models on the basis of demographic and genetic data, a combined approach so far surprisingly little used in mobile organisms. From 2002 to 2005, we studied nine subpopulations of the wetland-restricted reed bunting ( Emberiza schoeniclus ) in the southeastern part of the Canton Zurich (Switzerland), from which local declines of this species have been reported. Here, wetlands are as small as 2.7 ha and separated through intensively used agricultural landscapes. Demographic data consisted of dispersal of colour-banded individuals among subpopulations, immigration rates and extinction-/recolonization dynamics. Genetic data were based on the distribution of genetic variability and gene flow among subpopulations derived from the analysis of nine microsatellite loci. Both demographic and genetic data revealed that the patchy population model best described the spatial organization of reed bunting subpopulations. High levels of dispersal among subpopulations, high immigration into the patchy population, and genetic admixture suggested little risk of extinction of both subpopulations and the entire patchy population. This study exemplifies the idea that spatially discrete subpopulations may be organized in ways other than a metapopulation, and hence has implications for the conservation of subpopulations and species.  相似文献   

9.
Habitat fragmentation may interrupt trophic interactions if herbivores and their specific parasitoids respond differently to decreasing connectivity of populations. Theoretical models predict that species at higher trophic levels are more negatively affected by isolation than lower trophic level species. By combining ecological data with genetic information from microsatellite markers we tested this hypothesis on the butterfly Maculinea nausithous and its specialist hymenopteran parasitoid Neotypus melanocephalus. We assessed the susceptibility of both species to habitat fragmentation by measuring population density, rate of parasitism, overall genetic differentiation (theta(ST)) and allelic richness in a large metapopulation. We also simulated the dynamics of genetic differentiation among local populations to asses the relative effects of migration rate, population size, and haplodiploid (parasitoid) and diploid (host) inheritance on metapopulation persistence. We show that parasitism by N. melanocephalus is less frequent at larger distances to the nearest neighbouring population of M. nausithous hosts, but that host density itself is not affected by isolation. Allelic richness was independent of isolation, but the mean genetic differentiation among local parasitoid populations increased with the distance between these populations. Overall, genetic differentiation in the parasitoid wasp was much greater than in the butterfly host and our simulations indicate that this difference is due to a combination of haplodiploidy and small local population sizes. Our results thus support the hypothesis that Neotypus parasitoid wasps are more sensitive to habitat fragmentation than their Maculinea butterfly hosts.  相似文献   

10.
T Igawa  S Oumi  S Katsuren  M Sumida 《Heredity》2013,110(1):46-56
Isolation by distance and landscape connectivity are fundamental factors underlying speciation and evolution. To understand how landscapes affect gene flow and shape population structures, island species provide intrinsic study objects. We investigated the effects of landscapes on the population structure of the endangered frog species, Odorrana ishikawae and O. splendida, which each inhabit an island in southwest Japan. This was done by examining population structure, gene flow and demographic history of each species by analyzing 12 microsatellite loci and exploring causal environmental factors through ecological niche modeling (ENM) and the cost-distance approach. Our results revealed that the limited gene flow and multiple-population structure in O. splendida and the single-population structure in O. ishikawae were maintained after divergence of the species through ancient vicariance between islands. We found that genetic distance correlated with geographic distance between populations of both species. Our landscape genetic analysis revealed that the connectivity of suitable habitats influences gene flow and leads to the formation of specific population structures. In particular, different degrees of topographical complexity between islands are the major determining factor for shaping contrasting population structures of two species. In conclusion, our results illustrate the diversification mechanism of organisms through the interaction with space and environment. Our results also present an ENM approach for identifying the key factors affecting demographic history and population structures of target species, especially endangered species.  相似文献   

11.
Meng XF  Shi M  Chen XX 《Molecular ecology》2008,17(12):2880-2897
Chilo suppressalis (Walker) displays significant geographical differences in ecological preference that may be congruent with patterns of molecular variation. To test this, we collected and analysed 381 individuals of this species from cultivated rice at 18 localities in China during the rice-growing season of 2005–2006. We used four microsatellite DNA markers and four mitochondrial DNA gene fragments. We found that this species is highly differentiated, coupled with an estimated population expansion date of at least 60 000  bp . Phylogenetic analyses, Bayesian clustering, and phylogeographical analyses of statistical parsimony haplotype network consistently divided the populations into three clades: a central China (CC) clade, a northern plus northeastern China (NN) clade and a southwestern China (SW) clade. Analysis of molecular variance indicated a high level of geographical differentiation at different hierarchical levels [ F ST for microsatellite markers, COI, COII, 16S and ND1 is 0.06004 ( P  < 0.0001), 0.27607 ( P  < 0.0001), 0.22949 ( P  < 0.0001), 0.19485 ( P  < 0.0001) and 0.29285 ( P  < 0.0001), respectively]. Isolation by distance appeared among the samples from within China ( r  = 0.404, P  = 0.0002); Nem values estimated using a coalescent-based method were small (< 2 migrants per generation), suggesting that the observed levels of differentiation are a result of migration–drift equilibrium. Our results imply that the genetic differentiation of this borer, which is approximately in accordance with its observed number of generations per year in different Chinese geographical regions, is probably attributed to climatic and/or geological events (e.g. the last glacial maximum) and subsequently strengthened by the domestication of rice.  相似文献   

12.
Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.  相似文献   

13.
We investigated the effect of development mode on the spatial and temporal population genetic structure of four littorinid gastropod species. Snails were collected from the same three sites on the west coast of Vancouver Island, Canada in 1997 and again in 2007. DNA sequences were obtained for one mitochondrial gene, cytochrome b ( Cyt b ), and for up to two nuclear genes, heat shock cognate 70 ( HSC70 ) and aminopeptidase N intron ( APN54 ). We found that the mean level of genetic diversity and long-term effective population sizes ( N e) were significantly greater for two species, Littorina scutulata and L. plena , that had a planktotrophic larval stage than for two species, Littorina sitkana and L. subrotundata , that laid benthic egg masses which hatched directly into crawl-away juveniles. Predictably, two poorly dispersing species, L. sitkana and L. subrotundata , showed significant spatial genetic structure at an 11- to 65-km geographical scale that was not observed in the two planktotrophic species. Conversely, the two planktotrophic species had more temporal genetic structure over a 10-year interval than did the two direct-developing species and showed highly significant temporal structure for spatially pooled samples. The greater temporal genetic variation of the two planktotrophic species may have been caused by their high fecundity, high larval dispersal, and low but spatially correlated early survivorship. The sweepstakes-like reproductive success of the planktotrophic species could allow a few related females to populate hundreds of kilometres of coastline and may explain their substantially larger temporal genetic variance but lower spatial genetic variance relative to the direct-developing species.  相似文献   

14.
Abstract Nine novel microsatellite markers are presented for Aphelinus mali, a parasitoid of the woolly apple aphid Eriosoma lanigerum. Loci were characterized for 28 individuals from a single orchard in central Chile. Seven loci were polymorphic within A. mali (3–6 alleles per locus; observed heterozygosity ranging from 0.04 to 0.57) and are therefore useful for population genetic studies within this species.  相似文献   

15.
16.
We investigated the population structure of Grosmannia clavigera (Gc), a fungal symbiont of the mountain pine beetle (MPB) that plays a crucial role in the establishment and reproductive success of this pathogen. This insect-fungal complex has destroyed over 16 million ha of lodgepole pine forests in Canada, the largest MPB epidemic in recorded history. During this current epidemic, MPB has expanded its range beyond historically recorded boundaries, both northward and eastward, and has now reached the jack pine of Alberta, potentially threatening the Canadian boreal forest. To better understand the dynamics between the beetle and its fungal symbiont, we sampled 19 populations in western North America and genotyped individuals from these populations with eight microsatellite markers. The fungus displayed high haplotype diversity, with over 250 unique haplotypes observed in 335 single spore isolates. Linkage equilibria in 13 of the 19 populations suggested that the fungus reproduces sexually. Bayesian clustering and distance analyses identified four genetic clusters that corresponded to four major geographical regions, which suggested that the epidemic arose from multiple geographical sources. A genetic cluster north of the Rocky Mountains, where the MPB has recently become established, experienced a population bottleneck, probably as a result of the recent range expansion. The two genetic clusters located north and west of the Rocky Mountains contained many fungal isolates admixed from all populations, possibly due to the massive movement of MPB during the epidemic. The general agreement in north-south differentiation of MPB and G. clavigera populations points to the fungal pathogen's dependence on the movement of its insect vector. In addition, the patterns of diversity and the individual assignment tests of the fungal associate suggest that migration across the Rocky Mountains occurred via a northeastern corridor, in accordance with meteorological patterns and observation of MPB movement data. Our results highlight the potential of this pathogen for both expansion and sexual reproduction, and also identify some possible barriers to gene flow. Understanding the ecological and evolutionary dynamics of this fungus-beetle association is important for the modelling and prediction of MPB epidemics.  相似文献   

17.
African rainforests have undergone major distribution range shifts during the Quaternary, but few studies have investigated their impact on the genetic diversity of plant species and we lack knowledge on the extent of gene flow to predict how plant species can cope with such environmental changes. Analysis of the spatial genetic structure (SGS) of a species is an effective method to determine major directions of the demographic history of its populations and to estimate the extent of gene dispersal. This study characterises the SGS of an African tropical timber tree species, Distemonanthus benthamianus, at various spatial scales in Cameroon and Gabon. Displaying a large continuous distribution in the Lower Guinea domain, this is a model species to detect signs of past population fragmentation and recolonization, and to estimate the extent of gene dispersal. Ten microsatellite loci were used to genotype 295 adult trees sampled from eight populations. Three clearly differentiated gene pools were resolved at this regional scale and could be linked to the biogeographical history of the region, rather than to physical barriers to gene flow. A comparison with the distribution of gene pools observed for two other tree species living in the same region invalidates the basic assumption that all species share the same Quaternary refuges and recolonization pathways. In four populations, significant and similar patterns of SGS were detected. Indirect estimates of gene dispersal distances (sigma) obtained for three populations ranged from 400 to 1200 m, whereas neighbourhood size estimates ranged from 50 to 110.  相似文献   

18.
The heather beetle Lochmaea suturalis which is native to northwest Europe has been released as a biocontrol agent for heather in New Zealand. We have isolated and optimized eight microsatellite loci from New Zealand beetles. These loci provide markers with high polymorphism ranging from four to 20 alleles per locus. Observed heterozygosity averaged 0.631 per locus. These results suggest the markers are useful for population studies that will contribute to assessment of L. suturalis as a biocontrol agent.  相似文献   

19.
Population and reproductive biology of Uca thayeri Rathbun, 1900 were studied for the first time in a tropical mangrove. Absolute density, sex ratio, population structure, handedness, breeding season and fecundity were investigated. Seven transects were delimited in a mangrove area of the Pacoti River, Northeast of Brazil (3° 43′ 02″ S/38° 32′ 35″ W). On each transect, ten 0.25 m2 squares were sampled on a monthly basis during low tide periods from September 2003 to August 2004. A total of 483 crabs were obtained, of which 250 were males, 219 non-ovigerous females, and 14 ovigerous females. The U. thayeri population presented bi-modal size frequency distribution, with males and non-ovigerous females not differing significantly size-wise. Ovigerous females were larger than males and non-ovigerous females. The overall sex ratio (1:1.07) did not differ significantly from the expected 1:1 proportion. The major cheliped was the right one in 50% of the males. The observed density was of 8.5 individuals/m2, with the specimens being found mostly in shaded areas. Ovigerous females were found in 5 months of the year, coinciding with the rainy season, suggesting that the population of U. thayeri presents seasonal reproductive events. Juvenile crabs were more abundant during the dry period, while larger crabs were found mainly during the rainy period. The fecundity of the studied population was much smaller than that of subtropical populations of this species. The regression analysis shows that the number of eggs increases linearly with the increase of carapace width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号