首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that acute alcohol exposure will alter airway responsiveness (AR) in mice. To test this hypothesis, C57BL/6 mice were fed either 20% alcohol in drinking water (fed) or received a single intraperitoneal (ip) injection of alcohol (3 g/kg). Control groups received regular drinking water or ip saline. AR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause for each group of mice. To confirm alcohol exposure, elevated blood alcohol levels were documented. Alcohol feeding significantly blocked methacholine-triggered AR compared with water-fed controls. Comparable blunting of AR was also accomplished through a single ip injection of alcohol when compared with saline-injected controls. The alcohol response was slowly reversible in both routes of administration after withdrawal of alcohol: AR attenuation by alcohol persisted 12-20 h (ip) or up to 2 wk (fed) after blood alcohol cleared consistent with a sustained bronchodilator effect. These data demonstrate that brief alcohol exposure blunts AR in this murine model of alcohol exposure suggesting a role for alcohol in the modulation of bronchial motor tone.  相似文献   

2.

Background

Unrestrained plethysmography has been used to monitor bronchoconstriction because of its ease of use and ability to measure airway responsiveness in conscious animals. However, its reliability remains controversial.

Objective

To investigate if unrestrained plethysmography could provide a valid interpretation of airway responsiveness in allergic BALB/c mice.

Methods

Ovalbumin sensitized BALB/c mice were randomized to receive either a single-dose Ovalbumin challenge (OVA-1D group) or a three-dose Ovalbumin challenge (OVA-3D group). The OVA-1D group was further divided into OVA-1D-I (measured invasively, using lung resistance as the index of responsiveness) and OVA-1D-N group (measured non-invasively, using Penh as the index of responsiveness). Similarly the OVA-3D group was divided into OVA-3D-I and OVA-3D-N groups based on the above methods. The control groups were sensitized and challenged with normal saline. Bronchial alveolar lavage fluid was taken and airway histopathology was evaluated for airway inflammation. Nasal responsiveness was tested with histamine challenge.

Results

Compared with controls, a significant increase in airway responsiveness was shown in the OVA-1D-N group (P < 0.05) but not in the OVA-1D-I group. Both OVA-3D-I and OVA-3D-N groups showed higher responsiveness than their controls (P < 0.05). The nasal mucosa was infiltrated by eosinophic cells in all Ovalbumin immunized groups. Sneezing or nasal rubbing in allergic groups appeared more frequent than that in the control groups.

Conclusion

Penh can not be used as a surrogate for airway resistance. The invasive measurement is specific to lower airway. Penh measurement (done as a screening procedure), must be confirmed by a direct invasive measurement specific to lower airway in evaluating lower airway responsiveness.  相似文献   

3.
BackgroundXylitol is a 5-carbon sugar that can lower the airway surface salt concentration, thus enhancing innate immunity. We tested the safety and tolerability of aerosolized iso-osmotic xylitol in mice and human volunteers.MethodsThis was a prospective cohort study of C57Bl/6 mice in an animal laboratory and healthy human volunteers at the clinical research center of a university hospital. Mice underwent a baseline methacholine challenge, exposure to either aerosolized saline or xylitol (5% solution) for 150 minutes and then a follow-up methacholine challenge. The saline and xylitol exposures were repeated after eosinophilic airway inflammation was induced by sensitization and inhalational challenge to ovalbumin. Normal human volunteers underwent exposures to aerosolized saline (10 ml) and xylitol, with spirometry performed at baseline and after inhalation of 1, 5, and 10 ml. Serum osmolarity and electrolytes were measured at baseline and after the last exposure. A respiratory symptom questionnaire was administered at baseline, after the last exposure, and five days after exposure. In another group of normal volunteers, bronchoalveolar lavage (BAL) was done 20 minutes and 3 hours after aerosolized xylitol exposure for levels of inflammatory markers.ResultsIn naïve mice, methacholine responsiveness was unchanged after exposures to xylitol compared to inhaled saline (p = 0.49). There was no significant increase in Penh in antigen-challenged mice after xylitol exposure (p = 0.38). There was no change in airway cellular response after xylitol exposure in naïve and antigen-challenged mice. In normal volunteers, there was no change in FEV1 after xylitol exposures compared with baseline as well as normal saline exposure (p = 0.19). Safety laboratory values were also unchanged. The only adverse effect reported was stuffy nose by half of the subjects during the 10 ml xylitol exposure, which promptly resolved after exposure completion. BAL cytokine levels were below the detection limits after xylitol exposure in normal volunteers.ConclusionsInhalation of aerosolized iso-osmotic xylitol was well-tolerated by naïve and atopic mice, and by healthy human volunteers.  相似文献   

4.
This study was designed to evaluate the value and applicability of tidal breathing pattern analysis to assess bronchoconstriction in conscious rats. Using noninvasive, head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)), we measured airway responsiveness (AR) to inhaled acetylcholine and allergen in conscious Brown-Norway rats, followed by invasive determination of pulmonary conductance (GL) and EF(50) in anesthetized rats. Dose-response studies to acetylcholine showed that noninvasively recorded EF(50) closely reflected the dose-dependent decreases observed with the invasive monitoring of simultaneously measured GL and EF(50). After sensitization and intratracheal boost to ovalbumin or saline, rats were assessed for early and late AR to aerosolized ovalbumin. Ovalbumin aerosol challenge resulted in early and late AR in allergen-sensitized rats, whereas controls were unresponsive. The allergen-specific AR, as measured noninvasively by EF(50), was similar in degree compared with invasively recorded EF(50) and GL and was associated with enhanced IgE and airway inflammation. We conclude that EF(50) is a noninvasive and physiologically valid index of bronchoconstriction in a rat model of asthma.  相似文献   

5.
Epidemiological reports demonstrate an association between increased human morbidity and mortality with exposure to air pollution particulate matter (PM). Metal-catalyzed oxidative stress has been postulated to contribute to lung injury in response to PM exposure. We studied the effects of residual oil fly ash (ROFA), a component of ambient air PM, on the formation of lung carbonyls that are indicators of lipid peroxidation. Rats were instilled intratracheally with ROFA (62.5-1000 micrograms) and underwent lung lavage. Lavage fluid carbonyls were derivatized with 2,4-dinitrophenylhydrazine, and measured by high performance liquid chromatography with UV detection. Dose-dependent increases in a peak that eluted with the same retention time as the acetaldehyde (CH3CHO) derivative was observed in rats treated with ROFA 15 min after instillation (up to 25-fold greater than saline treated controls). The identification of CH3CHO was confirmed using gas chromatography-mass spectroscopy. ROFA-induced increases in other lavage fluid carbonyls were not seen. Increased CH3CHO in lavage fluid was observed as late as 8 h later. No increase in CH3CHO was observed in plasma from ROFA-treated rats. An increased formation of CH3CHO was observed in a human airway epithelial cell line incubated with ROFA suggesting a pulmonary source of CH3CHO production. Instillation of solutions of metals (iron, vanadium, nickel) contained in ROFA, or instillation of another ROFA-type particle containing primarily iron, also induced a specific increase in CH3CHO. These data support the hypothesis that metals were involved in the increased CH3CHO formation. Thus metals on PM may mediate lung responses through induction of lipid peroxidation and carbonyl formation.  相似文献   

6.
Endotoxin is one of the principal components of grain dust that causes acute reversible airflow obstruction and airway inflammation. To determine whether endotoxin responsiveness influences the development of chronic grain dust-induced airway disease, physiological and airway inflammation remodeling parameters were evaluated after an 8-wk exposure to corn dust extract (CDE) and again after a 4-wk recovery period in a strain of mice sensitive to (C3H/HeBFeJ) and one resistant to (C3H/HeJ) endotoxin. After the CDE exposure, both strains of mice had equal airway hyperreactivity to a methacholine challenge; however, airway hyperreactivity persisted only in the C3H/HeBFeJ mice after the recovery period. Only the C3H/HeBFeJ mice showed significant inflammation of the lower airway after the 8-wk exposure to CDE. After the recovery period, this inflammatory response completely resolved. Lung stereological measurements indicate that an 8-wk exposure to CDE resulted in persistent expansion of the airway submucosal cross-sectional area only in the C3H/HeBFeJ mice. Collagen type III and an influx of cells into the subepithelial area participated in the expansion of the submucosa. Our findings demonstrate that subchronic inhalation of grain dust extract results in the development of chronic airway disease only in mice sensitive to endotoxin but not in mice that are genetically hyporesponsive to endotoxin, suggesting that endotoxin is important in the development of chronic airway disease.  相似文献   

7.
We designed studies to determine if Leukotriene D4 (LTD4) could alter airway reactivity such that rhesus monkeys with positive skin reactivity and consistently negative airway responses would respond to ascaris airway challenge. The experiments were complicated by the observation that aerosolized LTD4 would occasionally increase airway hyperreactivity in some monkeys used as controls such that an airway response occurred to saline, the diluent for ascaris antigen. In spite of this, we were able to demonstrate induction of airway responsiveness to ascaris antigen. These results demonstrate that LTD4 will induce airway hyperreactivity to a nonspecific stimulus such as aerosolized saline or to an allergen.  相似文献   

8.
Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause (P(enh)). Twenty-four hours after each P(enh) measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after P(enh) measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the beta(2)-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.  相似文献   

9.
The mechanism of tissue injury after exposure to air pollution particles is not known. The biological effect has been postulated to be mediated via an oxidative stress catalyzed by metals present in particulate matter (PM). We utilized a transgenic (Tg) mouse model that overexpresses extracellular superoxide dismutase (EC-SOD) to test the hypothesis that lung injury after exposure to PM results from an oxidative stress in the lower respiratory tract. Wild-type (Wt) and Tg mice were intratracheally instilled with either saline or 50 microg of residual oil fly ash (ROFA). Twenty-four hours later, specimens were obtained and included bronchoalveolar lavage (BAL) and lung for both homogenization and light histopathology. After ROFA exposure, EC-SOD Tg mice showed a significant reduction in BAL total cell counts (composed primarily of neutrophils) and BAL total protein compared with Wt. EC-SOD animals also demonstrated diminished concentrations of inflammatory mediators in BAL. There was no statistically significant difference in BAL lipid peroxidation; however, EC-SOD mice had lower concentrations of oxidized glutathione in the BAL. We conclude that enhanced EC-SOD expression decreased both lung inflammation and damage after exposure to ROFA. This supports a participation of oxidative stress in the inflammatory injury after PM exposure rather than reflecting a response to metals alone.  相似文献   

10.
Airway hyperresponsiveness, airway inflammation, and reversible airway obstruction are physiological hallmarks of asthma. These responses are increasingly being studied in murine models of antigen exposure and challenge, using whole body plethysmography to noninvasively assess airway hyperresponsiveness. This approach infrequently has been correlated with indexes of airway hyperresponsiveness measured by invasive means. Furthermore, correlation with quantitative histological data for tissue infiltration by inflammatory and immune cells, particularly in the wall of airways, during daily airway challenge is lacking. To address these uncertainties, we used C57BL/6 mice that were immunized with ovalbumin or vehicle (saline) and sensitized to aerosolized ovalbumin or vehicle 8 days later. The mice were subsequently exposed to aerosolized ovalbumin or vehicle, respectively, on days 14-22. We assessed airway hyperresponsiveness to methacholine noninvasively on days 14, 15, 18, or 22; we studied the same mice 24 h later while they were anesthetized for invasive analyses of airway hyperresponsiveness. Plasma total IgE concentration was significantly higher in the ovalbumin-treated mice compared with the vehicle-treated mice, but this did not correlate with eosinophil number. Peak airway hyperresponsiveness measured by either approach correlated early during daily antigen challenge (days 14 and 15), but this correlation was lost later during subsequent daily antigen challenges (days 18 and 22). On days 14 and 15, peak airway hyperresponsiveness correlated with transmigration of neutrophils and macrophages, but not lymphocytes, in the peribronchovascular connective tissue sheaths. This extravascular accumulation was found to be focal by three-dimensional microscopy. We conclude that, although ovalbumin treatment changed lung function in mice, correlation between noninvasive and invasive measures of peak airway hyperresponsiveness was inconsistent.  相似文献   

11.
Tobacco smoke (TS) exposure induces airway hyperreactivity, particularly in sensitive individuals with asthma. However, the mechanism of this airway hyperreactivity is not well understood. To investigate the relative susceptibility of atopic and nonatopic individuals to TS-induced airway hyperreactivity, we exposed ovalbumin (OA)-sensitized and nonsensitized guinea pigs to TS exposure (5 mg/l air, 30-min exposure, 7 days/wk for 120-156 days). Two similar groups exposed to compressed air served as controls. Airway reactivity was assessed as an increase in enhanced pause (Penh) units using a plethysmograph that allowed free movement of the animals. After 90 days of exposure, airway reactivity increased in OA-TS guinea pigs challenged with capsaicin, bradykinin, and neurokinin A fragment 4--10 aerosols. In addition, substance P content increased in lung perfusate of OA-TS guinea pigs in response to acute TS challenge compared with that of the other groups. Airway hyperirritability was not enhanced by phosphoramidon but was attenuated by a cocktail of neurokinin antagonists, nor was airway hyperreactivity observed after either methacholine or histamine challenge in OA-TS guinea pigs. Chronic TS exposure enhanced neither airway reactivity to histamine or methacholine nor contractility of isolated tracheal rings. In conclusion, chronic TS exposure increased airway reactivity to capsaicin and bradykinin aerosol challenge, and OA-TS guinea pigs were most susceptible to airway dysfunction as the result of exposure to TS compared with the other groups. Increased airway reactivity to capsaicin suggests a mechanism involving neurogenic inflammation, such as increased activation of lung C fibers.  相似文献   

12.
Epidemiological reports demonstrate an association between increased human morbidity and mortality with exposure to air pollution particulate matter (PM). Metal-catalyzed oxidative stress has been postulated to contribute to lung injury in response to PM exposure. We studied the effects of residual oil fly ash (ROFA), a component of ambient air PM, on the formation of lung carbonyls that are indicators of lipid peroxidation. Rats were instilled intratracheally with ROFA (62.5–1000 μg) and underwent lung lavage. Lavage fluid carbonyls were derivatized with 2,4-dinitrophenylhydrazine, and measured by high performance liquid chromatography with UV detection. Dose-dependent increases in a peak that eluted with the same retention time as the acetaldehyde (CH3CHO) derivative was observed in rats treated with ROFA 15 min after instillation (up to 25-fold greater than saline treated controls). The identification of CH3CHO was confirmed using gas chromatography-mass spectroscopy. ROFA-induced increases in other lavage fluid carbonyls were not seen. Increased CH3CHO in lavage fluid was observed as late as 8 h later. No increase in CH3CHO was observed in plasma from ROFA-treated rats. An increased formation of CH3CHO was observed in a human airway epithelial cell line incubated with ROFA suggesting a pulmonary source of CH3CHO production. Instillation of solutions of metals (iron, vanadium, nickel) contained in ROFA, or instillation of another ROFA-type particle containing primarily iron, also induced a specific increase in CH3CHO. These data support the hypothesis that metals were involved in the increased CH3CHO formation. Thus metals on PM may mediate lung responses through induction of lipid peroxidation and carbonyl formation.  相似文献   

13.
A(2A) adenosine receptor (A(2A)AR) has potent anti-inflammatory properties, which may be important in the regulation of airway reactivity and inflammation. Inflammatory cells that possess A(2A)AR also produce nitrosative stress, which is associated with pathophysiology of asthma, so we hypothesized that A(2A)AR deficiency may lead to increased airway reactivity and inflammation through nitrosative stress. Thus the present study was carried out to investigate the role of A(2A)AR on airway reactivity, inflammation, NF-kappaB signaling, and nitrosative stress in A(2A)AR knockout (KO) and wild-type (WT) mice using our murine model of asthma. Animals were sensitized intraperitoneally on days 1 and 6 with 200 microg of ragweed, followed by aerosolized challenges with 0.5% ragweed on days 11, 12, and 13, twice a day. On day 14, airway reactivity to methacholine was assessed as enhanced pause (Penh) using whole body plethysmography followed by bronchoalveolar lavage (BAL) and lung collection for various analyses. Allergen challenge caused a significant decrease in expression of A(2A)AR in A(2A) WT sensitized mice, with A(2A)AR expression being undetected in A(2A) KO sensitized group leading to decreased lung cAMP levels in both groups. A(2A)AR deletion/downregulation led to an increase in Penh to methacholine and influx of total cells, eosinophils, lymphocytes, and neutrophils in BAL with highest values in A(2A) KO sensitized group. A(2A) KO sensitized group further had increased NF-kappaB expression and nitrosative stress compared with WT sensitized group. These data suggest that A(2A)AR deficiency leads to airway inflammation and airway hyperresponsiveness, possibly via involvement of nitrosative stress in this model of asthma.  相似文献   

14.
We assessed the in vitro toxicity of various particles on three murine macrophage cell lines, (J774A.1, WR19M.1, RAW264.7). The cells were exposed to aqueous suspensions (0-100 microg/30 mm2 well) of urban particulate matter (SRM-1648, SRM-1649, EHC-93), fine particulate matter (PM2.5), titanium dioxide (SRM-154b), and respirable cristobalite (SRM-1879) for 2 h and were then stimulated with lipopolysaccharide (LPS, 100 ng/ml) and recombinant interferon-gamma (IFN, 100 U/ml). After overnight incubation with the particles and LPS/IFN, nitric oxide production was estimated from culture supernatant nitrite. Cell viability was determined by monitoring the rate of AlamarBlue reduction. The dose-effect relationships for nitrite and viability were modeled as a power function (Fold change = [Dose+1]beta), where beta represents the slope of the dose-response curve. Potency was defined as the rate of change in nitrite production corrected for cell viability (beta(POTENCY) = beta(NITRITE) - beta(VIABILITY)). Overall, the urban particles decreased nitric oxide production (beta(POTENCY) < 0), while exposure of the cells to fine particulate matter or cristobalite increased the production of nitric oxide (beta(POTENCY) > 0). Titanium dioxide (TiO2) was essentially inactive (beta(POTENCY) approximately to 0). The decrease in nitric oxide production seen in cells exposed to the urban particles was directly correlated to a decrease in the expression of inducible nitric oxide (iNOS) as determined by Western blot analysis. The results indicate that particles are modulators of nitric oxide production in murine macrophages and may directly disrupt expression of iNOS during concomitant pathogen exposure. Pathways leading to enhanced NO production causing cell injury, and to decreased NO release resulting in lower bacterial clearance, may both be relevant to the health effects of ambient particles.  相似文献   

15.
We have studied the effect of repeated in vivo antigen exposure on in vitro airway responsiveness in sensitized sheep. Fourteen sheep underwent five biweekly exposures to aerosolized Ascaris suum antigen or saline. Following this exposure regimen, the animals were killed and tracheal smooth muscle and lung parenchymal strips were prepared for in vitro studies of isometric contraction in response to histamine, methacholine, prostaglandin F2 alpha, and a thromboxane A2 analogue. No alteration in tracheal smooth muscle responsiveness was observed between saline- and antigen-exposed tissue. In contrast, by use of lung parenchymal strips as an index of peripheral airway responsiveness, significant increases in responsiveness to histamine and a thromboxane A2 analogue (10(-6) and 10(-5) M) were observed in antigen-exposed tissue compared with saline controls. These results demonstrate that repeated antigen exposure in vivo selectively increase the responsiveness of peripheral lung smooth muscle to certain chemical mediators of anaphylaxis.  相似文献   

16.

Background

Exposure of human populations to ambient particulate matter (PM) air pollution significantly contributes to the mortality attributable to ischemic cardiovascular events. We reported that mice treated with intratracheally instilled PM develop a prothrombotic state that requires the release of IL-6 by alveolar macrophages. We sought to determine whether exposure of mice to PM increases the levels of PAI-1, a major regulator of thrombolysis, via a similar or distinct mechanism.

Methods and Principal Findings

Adult, male C57BL/6 and IL-6 knock out (IL-6−/−) mice were exposed to either concentrated ambient PM less than 2.5 µm (CAPs) or filtered air 8 hours daily for 3 days or were exposed to either urban particulate matter or PBS via intratracheal instillation and examined 24 hours later. Exposure to CAPs or urban PM resulted in the IL-6 dependent activation of coagulation in the lung and systemically. PAI-1 mRNA and protein levels were higher in the lung and adipose tissue of mice treated with CAPs or PM compared with filtered air or PBS controls. The increase in PAI-1 was similar in wild-type and IL-6−/− mice but was absent in mice treated with etanercept, a TNF-α inhibitor. Treatment with etanercept did not prevent the PM-induced tendency toward thrombus formation.

Conclusions

Mice exposed to inhaled PM exhibited a TNF-α-dependent increase in PAI-1 and an IL-6-dependent activation of coagulation. These results suggest that multiple mechanisms link PM-induced lung inflammation with the development of a prothrombotic state.  相似文献   

17.
18.
The barometric method has recently been employed to detect airway constriction in small animals. This study was designed to evaluate the barometric method to detect mediator-induced central and peripheral airway constriction in BALB/c mice. First, the central airway constrictor carbachol and the peripheral airway constrictor histamine were employed to induce airway constriction, which was detected by both the conventional body plethysmography and the barometric method in anesthetized mice. Second, bronchoconstriction induced by aerosolized carbachol or other mediators was detected with the barometric plethysmography in conscious, unrestrained mice. Carbachol inhalation caused about four-fold increase in pulmonary resistance (RL) and about two-fold increase in enhanced pause (Penh) in anesthetized mice. In contrast, in the same preparation, histamine aerosol induced a decrease in dynamic compliance (Cdyn), with no alteration in RL or Penh. In awake mice, carbachol and methacholine caused increases in Penh, frequency, and tidal volume (VT). On the other hand, histamine, histamine + bradykinin, and prostaglandin-D2 did not alter Penh but decreased VT in conscious mice. These data suggest that there was no sufficient evidence to indicate that Penh could be a good indicator of bronchoconstriction for the whole airways.  相似文献   

19.
Epidemiological studies have shown that elevated concentrations of particulate matter 2.5 (PM2.5) correlate with increased incidence of asthma. Studies have highlighted the implication of microRNAs (miRNAs) in asthmatic response. Here, the objective of this study is to explore the effect of miR-224 on PM2.5-induced asthmatic mice. Ovalbumin (OVA) was utilized to establish asthmatic mouse models, which were then exposed to PM2.5, followed by miR-224 expression detection. Next, lesions and collagen deposition area in lung tissue, ratio Treg/Th17, the expression of TLR4 and MYD88, inflammation, eosinophils (EOS) and airway remodelling were evaluated in OVA mice after injection with miR-224 agomir. Following isolation of mouse primary bronchial epithelial cells, miR-224 mimic and TLR2/TLR4 inhibitor were introduced to assess inflammation and the expression of TGF-β, MMP9, TIMP-1, Foxp3, RORγt, TLR2, TLR4 and MYD88. After exposure to PM2.5, lesions and collagen deposition were promoted in lung tissues, inflammation and EOS were increased in bronchoalveolar lavage fluid (BALF), and airway remodelling was enhanced in OVA mice. miR-224 was down-regulated, whereas TLR2/TLR4/MYD88 was up-regulated in OVA mice after treatment with PM2.5, accompanied by Treg/Th17 immune imbalance. Of note, bioinformatic prediction and dual luciferase reporter gene assay confirmed that TLR2 was a target gene of miR-224. Overexpressed miR-224 reduced expression of TGF-β, MMP9, TIMP-1 and RORγt and inflammation but increased Foxp3 expression in bronchial epithelial cells through down-regulating TLR2. In summary, overexpressed miR-224 suppressed airway epithelial cell inflammation and airway remodelling in PM2.5-induced asthmatic mice through decreasing TLR2 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号