首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A collection of 179 human and 156 bovine clinical Salmonella isolates obtained from across New York state over the course of 1 year was characterized using serotyping and a multilocus sequence typing (MLST) scheme based on the sequencing of three genes (fimA, manB, and mdh). The 335 isolates were differentiated into 52 serotypes and 72 sequence types (STs). Analyses of bovine isolates collected on different farms over time indicated that specific subtypes can persist over time on a given farm; in particular, a number of farms showed evidence for the persistence of a specific Salmonella enterica serotype Newport sequence type. Serotypes and STs were not randomly distributed among human and bovine isolates, and selected serotypes and STs were associated exclusively with either human or bovine sources. A number of common STs were geographically widespread. For example, ST6, which includes isolates representing serotype Typhimurium as well as the emerging serotype 4,5,12:i:-, was found among human and bovine isolates in a number of counties in New York state. Phylogenetic analyses supported the possibility that serotype 4,5,12:i:- is closely related to Salmonella serotype Typhimurium. Salmonella serotype Newport was found to represent two distinct evolutionary lineages that differ in their frequencies among human and bovine isolates. A number of Salmonella isolates carried two copies of manB (33 isolates) or showed small deletion events in fimA (nine isolates); these duplication and deletion events may provide mechanisms for the rapid diversification of Salmonella surface molecules. We conclude that the combined use of an economical three-gene MLST scheme and serotyping can provide considerable new insights into the evolution and transmission of Salmonella.  相似文献   

2.
Salmonellosis caused by Salmonella enterica serovar Newport is a major global public health concern, particularly because S. Newport isolates that are resistant to multiple drugs (MDR), including third-generation cephalosporins (MDR-AmpC phenotype), have been commonly isolated from food animals. We analyzed 384 S. Newport isolates from various sources by a multilocus sequence typing (MLST) scheme to study the evolution and population structure of the serovar. These were compared to the population structure of S. enterica serovars Enteritidis, Kentucky, Paratyphi B, and Typhimurium. Our S. Newport collection fell into three lineages, Newport-I, Newport-II, and Newport-III, each of which contained multiple sequence types (STs). Newport-I has only a few STs, unlike Newport-II or Newport-III, and has possibly emerged recently. Newport-I is more prevalent among humans in Europe than in North America, whereas Newport-II is preferentially associated with animals. Two STs of Newport-II encompassed all MDR-AmpC isolates, suggesting recent global spread after the acquisition of the bla(CMY-2) gene. In contrast, most Newport-III isolates were from humans in North America and were pansusceptible to antibiotics. Newport was intermediate in population structure to the other serovars, which varied from a single monophyletic lineage in S. Enteritidis or S. Typhimurium to four discrete lineages within S. Paratyphi B. Both mutation and homologous recombination are responsible for diversification within each of these lineages, but the relative frequencies differed with the lineage. We conclude that serovars of S. enterica provide a variety of different population structures.  相似文献   

3.
Salmonella represents an important zoonotic pathogen worldwide, but the transmission dynamics between humans and animals as well as within animal populations are incompletely understood. We characterized Salmonella isolates from cattle and humans in two geographic regions of the United States, the Pacific Northwest and the Northeast, using three common subtyping methods (pulsed-field gel electrophoresis [PFGE], multilocus variable number of tandem repeat analysis [MLVA], and multilocus sequence typing [MLST]). In addition, we analyzed the distribution of antimicrobial resistance among human and cattle Salmonella isolates from the two study areas and characterized Salmonella persistence on individual dairy farms. For both Salmonella enterica subsp. enterica serotypes Newport and Typhimurium, we found multidrug resistance to be significantly associated with bovine origin of isolates, with the odds of multidrug resistance for Newport isolates from cattle approximately 18 times higher than for Newport isolates from humans. Isolates from the Northwest were significantly more likely to be multidrug resistant than those from the Northeast, and susceptible and resistant isolates appeared to represent distinct Salmonella subtypes. We detected evidence for strain diversification during Salmonella persistence on farms, which included changes in antimicrobial resistance as well as genetic changes manifested in PFGE and MLVA pattern shifts. While discriminatory power was serotype dependent, the combination of PFGE data with either MLVA or resistance typing data consistently allowed for improved subtype discrimination. Our results are consistent with the idea that cattle are an important reservoir of multidrug-resistant Salmonella infections in humans. In addition, the study provides evidence for the value of including antimicrobial resistance data in epidemiological investigations and highlights the benefits and potential problems of combining subtyping methods.Salmonella is an important human and animal pathogen worldwide. In the United States, Salmonella causes an estimated 1.4 million human cases, 15,000 hospitalizations, and more than 400 deaths each year (44, 75). Human infections can be acquired through contact with animals or humans shedding Salmonella or through contaminated environments, but the majority of human infections are food-borne, and a large number of human outbreaks have been linked to foods of animal origin (20). Beef represents one well-recognized source of human infection (71). In addition, a number of human cases have been linked to dairy products or cattle contact, for instance at state fairs or on dairy farms (for example, see references 25, 35, and 61).Salmonella enterica subsp. enterica serotypes Typhimurium and Newport are commonly isolated from human cases, including those linked to cattle (20, 61). In 2006, Salmonella serotypes Typhimurium and Newport were isolated from 17 and 8% of reported human salmonellosis cases in the United States, respectively, making them the first and third most common human disease-associated serotypes in the United States (15). S. enterica serotype 4,5,12:i:− is both genetically and antigenically closely related to Salmonella serotype Typhimurium, of which it represents a monophasic variant (62). Salmonella enterica serotype 4,5,12:i:− is characterized by a deletion of flagellar genes fliA and fliB, which prevents expression of the phase 2 flagellar antigen (60). In the United States, the prevalence of Salmonella serotype 4,5,12:i:− has increased considerably over the past 10 years, and in 2006, Salmonella serotype 4,5,12:i:− represented the sixth most commonly isolated serotype from humans in the United States (15, 60).Salmonella serotype Newport represents two distinct clonal groups or lineages—one predominantly associated with isolates from cattle (i.e., Newport lineage A) and one associated with isolates from birds (i.e., Newport lineage B) (1, 33). Members of both lineages cause human infections (1, 33). The two Newport lineages can be clearly distinguished by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE), and some correlation between genetic lineage and antimicrobial resistance profile seems to exist (1, 33). In general, Newport lineage B isolates are pansusceptible or resistant to only a few antimicrobial drugs. In contrast, lineage A is strongly associated with multidrug resistance and includes a Newport subtype commonly referred to as Newport MDR-AmpC (1, 33).The prevalence of antimicrobial resistance among Salmonella serotype Newport and Typhimurium isolates has increased worldwide during the last 2 decades, predominantly as a result of emerging multidrug-resistant (MDR) strains (14, 52, 65). During the 1990s, Salmonella serotype Typhimurium phage type DT104 with pentaresistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) increased considerably in prevalence around the world, and some isolates acquired resistance to additional antimicrobial agents, including trimethoprim or ciprofloxacin (52). MDR Salmonella serotype Typhimurium DT104 has been isolated from a wide variety of host species and caused numerous large human outbreaks around the world (65). Salmonella serotype Newport MDR-AmpC, characterized by resistance to ACSSuT and carrying a plasmid encoding resistance to amoxicillin-clavulanic acid, cefoxitin, ceftiofur, and cephalothin emerged in the United States during the late 1990s, where it quickly became widespread among humans and cattle, leading to several large human outbreaks (14).Whether antimicrobial drug use in animals facilitates the emergence of MDR human pathogens is still subject to debate. Some studies report a temporal association between the introduction of new antimicrobial agents in veterinary medicine and the emergence of antimicrobial resistance (for instance, see references 22 and 58), but questions regarding the underlying evolutionary mechanisms, the origin and distribution of naturally occurring resistance genes, and the role of antimicrobial usage among humans remain (for example, see references 2 and 66 for reviews on this topic). Moreover, some studies report a higher prevalence of antimicrobial resistance among Salmonella isolates from farm animals than humans. Gebreyes et al. (26), for instance, found a higher prevalence of antimicrobial resistance among Salmonella isolates from pigs than humans, but potential effects attributable to differences in serotype distribution are difficult to assess in this study. In recent years, risk factors for MDR have received considerable attention. Infections with MDR Salmonella strains can lead to treatment failures, may be of longer duration, and may result in more severe clinical disease. Hence, such infections lead more often to hospitalization or death than infections with susceptible Salmonella strains, but serotype or subtype differences between resistant and susceptible Salmonella strains complicate the interpretation of clinical data (34, 41, 68).Subtyping methods allow characterization of Salmonella isolates and include phenotypic methods (e.g., serotyping or phage typing) as well as molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE), ribotyping, multilocus variable number of tandem repeat analysis (MLVA), and multilocus sequence typing (MLST) (5). PFGE is widely used and robust, and rigorous standardization allows comparison between laboratories (5). However, the method is time-intensive and laborious, requires careful standardization and analysis, does not allow phylogenetic inference, and can in rare cases be affected by endogenous nucleases or DNA methylation (for a review of this topic, see reference 5). MLVA and MLST are rapid, allow for easy data exchange between laboratories, and provide some phylogenetic information (5). MLVA is highly discriminatory but subject to rapid diversification and therefore most appropriate for the analysis of closely related isolates. While MLST lacks discriminatory power within Salmonella serotypes, it is highly reproducible and allows for phylogenetic analysis of more distantly related isolates (1, 5, 33). PFGE and MLST can be performed regardless of serotype, but MLVA protocols are serotype specific and have so far only been validated for a limited number of Salmonella serotypes. Moreover, MLVA can be complicated by inaccurate sizing of DNA fragments, and the degree of reliability can be considerably influenced by nucleotide composition and fragment length (5). Overall, these subtyping methods differ considerably in discriminatory power and sometimes yield conflicting results, and the most appropriate subtyping method or combination thereof strongly depends on serotype and chosen application (19, 56, 72, 76). Other genetic or phenotypic characteristics, such as antimicrobial resistance patterns or the presence of specific plasmids, have also been used successfully for subtyping in outbreak investigations and other epidemiological studies and can provide valuable additional information (7, 8, 40, 63, 64).Here we describe the distribution and subtype diversity of Salmonella serotypes Newport, 4,5,12:i:−, and Typhimurium among cattle and humans in two geographic regions of the United States, and we assess common risk factors for multidrug resistance. In addition, we utilize three Salmonella subtyping methods (PFGE, MLVA, and MLST), analyze their usefulness for characterizing isolates representing three common human-associated Salmonella serotypes, and compare the combined discriminatory power of PFGE and MLVA to that of PFGE and antimicrobial resistance patterns.  相似文献   

4.
The aims of this study were to determine the ability of amplified fragment length polymorphism (AFLP) to differentiate Salmonella isolates from different units of swine production and to demonstrate the relatedness of Salmonella between farms and abattoirs by AFLP. Twenty-four farms in the midwestern United States were visited four times from 2006 to 2009. At each farm or abattoir visit, 30 fecal samples or 30 mesenteric lymph nodes were collected, respectively. A total of 220 Salmonella isolates were obtained, serotyped, and genotyped by multilocus sequence typing (MLST) and AFLP. These 220 isolates clustered into 21 serotypes, 18 MLST types, and 14 predominant AFLP clusters based on a genetic similarity threshold level of 60%. To assess genetic differentiation between farms, harvest cohorts, and pigs, analysis of molecular variance was conducted using AFLP data. The results showed 65.62% of overall genetic variation was attributed to variance among pigs, 27.21% to farms, and 7.17% to harvest cohorts. Variance components at the farm (P = 0.003) and pig (P = 0.001) levels were significant, but not at the harvest cohort level (P = 0.079). A second analysis, a permutation test using AFLP data, indicated that on-farm and at-abattoir Salmonella from pigs of the same farms were more related than from different farms. Therefore, among the three subtyping methods, serotyping, MLST, and AFLP, AFLP was the method that was able to differentiate among Salmonella isolates from different farms and link contamination at the abattoir to the farm of origin.  相似文献   

5.
Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents.  相似文献   

6.
Salmonella enterica subsp. enterica is the leading cause of bacterial food-borne disease in the United States. Molecular subtyping methods are powerful tools for tracking the farm-to-fork spread of food-borne pathogens during outbreaks. In order to develop a novel multilocus sequence typing (MLST) scheme for subtyping the major serovars of S. enterica subsp. enterica, the virulence genes sseL and fimH and clustered regularly interspaced short palindromic repeat (CRISPR) loci were sequenced from 171 clinical isolates from nine Salmonella serovars, Salmonella serovars Typhimurium, Enteritidis, Newport, Heidelberg, Javiana, I 4,[5],12:i:-, Montevideo, Muenchen, and Saintpaul. The MLST scheme using only virulence genes was congruent with serotyping and identified epidemic clones but could not differentiate outbreaks. The addition of CRISPR sequences dramatically improved discriminatory power by differentiating individual outbreak strains/clones. Of particular note, the present MLST scheme provided better discrimination of Salmonella serovar Enteritidis strains than pulsed-field gel electrophoresis (PFGE). This method showed high epidemiologic concordance for all serovars screened except for Salmonella serovar Muenchen. In conclusion, the novel MLST scheme described in the present study accurately differentiated outbreak strains/clones of the major serovars of Salmonella, and therefore, it shows promise for subtyping this important food-borne pathogen during investigations of outbreaks.  相似文献   

7.
Genetic diversity and molecular typing of Listeria monocytogenes in China   总被引:3,自引:0,他引:3  
Wang Y  Zhao A  Zhu R  Lan R  Jin D  Cui Z  Wang Y  Li Z  Wang Y  Xu J  Ye C 《BMC microbiology》2012,12(1):119
ABSTRACT: BACKGROUND: Listeria monocytogenes can cause invasive diseases in humans and farm animals and is frequently isolated from dairy products and poultry. Listeriosis is uncommon in China but L. monocytogenes has been isolated from foods and food processing environments in China. However little is known of genetic diversity of Chinese L. monocytogenes isolates and their relationships with global isolates. RESULTS: Two hundred and twelve isolates of L. monocytogenes from food sources from 12 provinces/cities in China were analysed by serotyping, Pulsed Field Gel Electrophoresis (PFGE) and Multi-locus Sequence Typing (MLST). The predominant serotypes are 1/2a, 1/2b and 1/2c accounting for 90.1% of the isolations. PFGE divided the isolates into 61 pulse types (PTs). Twenty nine PTs were represented by more than one isolates with PT GX6A16.0004 containing the most number of isolates. MLST differentiated the isolates into 36 STs, among which 15 were novel. The most common 3 STs were ST9 (29.1%), ST8 (10.7%) and ST87 (9.2%), accounting for 49.0% of the isolates. CONCLUSIONS: STs prevalent in other parts of the world are also prevalent in China including 7 STs (ST1-ST3, ST5, ST6, ST8, ST9) which caused maternal fetal infections or outbreaks, suggesting that these STs potentially can also cause severe human infections or outbreaks in China. Surveillance of these STs will provide important information for prevention of listeriosis. This study also enhances our understanding of genetic diversity of L. monocytogenes in China.  相似文献   

8.

Background

The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10.

Methods and Findings

Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates.

Conclusions

Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation.  相似文献   

9.
The 183 bp between the end of the 23S rrlH rRNA gene and the start of the 5S rrfH rRNA gene (ISR-1) and the 197 bp between the end of the rrfH rRNA gene and the start of the transfer RNA aspU (ISR-2) of Salmonella enterica ssp. enterica serotypes Enteritidis, Typhimurium, Pullorum, Heidelberg, Gallinarum, Typhi and Choleraesuis were compared. ISR-1s of D1 serotypes (Pullorum, Gallinarum and Enteritidis), B serotypes (Typhimurium and Heidelberg) and the C2 serotype Newport and the enteric fever pathogens serotype A Paratyphi and serotype D1 Typhi formed three clades, respectively. ISR-2 further differentiated the avian-adapted serotype Gallinarum from avian-adapted Pullorum and Salmonella bongori from S. enterica. The results suggest that serotypes Heidelberg and Choleraesuis share some evolutionary trends with egg-contaminating serotypes. In addition, ISR-1 and ISR-2 sequences that confirm serotype appear to be linked to clinically relevant host associations of the Salmonellae.  相似文献   

10.
Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool.  相似文献   

11.
The increase in frequency of Salmonella enterica resistant to antibiotics in food-producing animals is of great concern to public health. Determining the rate at which different resistance phenotypes are generated and maintained in the environment is thus of great importance. The distribution and evolution of antibiotic resistance and multidrug-resistance in 362 Salmonella stains as part of a cross-sectional study of the Canadian swine industry were investigated. The susceptibility of all isolates to 12 antimicrobial agents was tested and the statistical and phylogenetic distribution of resistance among strains characterized via multilocus sequence typing was studied to test the origin of multidrug-resistance in Salmonella. More than 25% of all isolates were multidrug-resistant, with predominance in serotype Typhimurium, a serotype of vital importance to public health. The strong associations between resistance phenotypes, which differ among serotypes and which is supported by the significant genetic distance between serotypes, was indicative of the independent acquisition of multidrug-resistance in at least two different serotypes, i.e. Typhimurium and Derby. The independent origin of multidrug-resistance in Salmonella indicates that strong selective pressures are present in the environment of the bacteria and that statistical and phylogenetic studies of antibiotic resistance are an essential part in the understanding and the control of the epidemic.  相似文献   

12.
An increase in the prevalence of Salmonella enterica serotype Typhimurium DT104 has been reported worldwide. This study examined the prevalence of this microorganism in poultry environmental samples from commercial layer flocks and pullet environments as well as the sensitivity and specificity of a PCR-based method, and multiple antibiotic resistance profile of Salmonella serogroup B isolates in relation to the serotype and phagetype reference method for the identification of Salmonella Typhimurium DT104. A total of 435 Salmonella isolates were obtained from poultry house environmental samples tested during a 20-month period representing a prevalence of 5.5%. Of these, 313 (72%) isolates were identified as Salmonella serogroup B isolates. These isolates were tested by a PCR-based assay, and for resistance to five antibiotics: ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) for the rapid identification of Salmonella Typhimurium DT104. Upon comparing the antibiotic resistance and PCR results with serotype and phage type data, the sensitivity and specificity for the identification of Salmonella Typhimurium DT104 of both methods were found to be 100%, and 99.6%, respectively. Both methods can be completed within 24 h after obtaining an isolate, while serotyping and phagetyping required more than 5 days to complete.  相似文献   

13.
The accurate sub-typing of Salmonella enterica isolates is essential for epidemiological investigations and surveillance of Salmonella infections. Salmonella isolates are currently identified using the Kauffman-White serotyping scheme. Multilocus sequence typing (MLST) schemes have been developed for the major bacterial pathogens including Salmonella and have assisted in understanding the molecular epidemiology and population biology of these organisms. Recently, the DiversiLab rep-PCR system has been developed using micro-fluidic chips to provide standardized, semi-automated fingerprinting for pathogens including S. enterica. In the current study, 71 isolates of S. enterica, representing 21 serovars, were analyzed using MLST and the DiversiLab rep-PCR system. MLST was able to identify 31 sequence types (STs), while the DiversiLab system revealed 38 DiversiLab types (DTs). The rep-PCR distinguished isolates of different serovars and showed greater discriminatory power (0.95) than MLST typing (0.89). Rep-PCR exhibited 92% concordance with MLST and 90% with serotyping, while the concordance level of MLST typing with serotyping was 96%, representing a strong association. Comparison of rep-PCR profiles with those held in an online library database led to the accurate prediction of serovar in 63% of cases and resulted in inaccurate predictions for 10% of profiles. MLST and the rep-PCR system may provide useful additional informative techniques for the molecular identification of S. enterica. We conclude that the DiversiLab rep-PCR system may provide a rapid (less than 4 h) and standardized method for sub-typing isolates of S. enterica.  相似文献   

14.
AIMS: Multilocus sequence typing (MLST) was used to examine the diversity and population structure of Campylobacter jejuni isolates associated with sporadic cases of gastroenteritis in Australia, and to compare these isolates with those from elsewhere. METHODS AND RESULTS: A total of 153 Camp. jejuni isolates were genotyped. Forty sequence types (STs) were found, 19 of which were previously undescribed and 21 identified in other countries. The 19 newly described STs accounted for 43% of isolates, 16 of which were assigned to known clonal complexes. Eighty-eight percent of isolates were assigned to a total of 15 clonal complexes. Of these, four clonal complexes accounted for 60% of isolates. Three STs accounted for nearly 40% of all isolates and appeared to be endemic, while 21 STs were represented by more than one isolate. Seven infections were acquired during international travel, and the associated isolates all had different STs, three of which were exclusive to the travel-acquired cases. Comparison of serotypes among isolates from clonal complexes revealed further diversity. Eight serotypes were identified among isolates from more than one clonal complex, while isolates from six clonal complexes displayed serotypes not previously associated with those clonal complexes. CONCLUSIONS: Multilocus sequence typing is a useful tool for the discrimination of subtypes and examination of the population structure of Camp. jejuni associated with sporadic infections. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the genotypic diversity of Camp. jejuni in Australia, demonstrating that STs causing disease have both a global and a local distribution evident from the typing of domestically and internationally acquired Camp. jejuni isolates.  相似文献   

15.
Molecular typing is an important tool in surveillance and outbreak investigations of human Salmonella infections. In this study, three molecular typing methods were used to investigate the discriminatory ability, reproducibility and the genetic relationship between 110 Salmonella enterica subspecies enterica isolates. A total of 25 serotypes were investigated that had been isolated from humans or veterinary sources in Denmark between 1995 and 2001. All isolates were genotyped by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and amplified fragment length polymorphism (AFLP). When making genetic trees, all three methods resulted in similar clustering that often corresponded with serotype, although some serotypes displayed more diversity than others. Of the three techniques, MLST was the easiest to interpret and compare between laboratories. Unfortunately the seven housekeeping genes used in this MLST scheme lacked diversity and the ability to discriminate between isolates were higher with both PFGE and AFLP. The discriminatory power of AFLP and PFGE were similar but PFGE fingerprints were both easier to reproduce, interpret and less time-consuming to analyze when compared to AFLP. PFGE is the therefore the preferred molecular typing method for surveillance and outbreak investigations, whereas AFLP is most useful for local outbreak investigations.  相似文献   

16.
To assess the impacts of different types of human activity on the development of resistant bacteria in the feces of wild small mammals, we compared the prevalences and patterns of antimicrobial resistance and resistance genes in generic Escherichia coli and Salmonella enterica isolates from fecal samples collected from wild small mammals living in four environments: swine farms, residential areas, landfills, and natural habitats. Resistance to antimicrobials was observed in E. coli isolates from animals in all environments: 25/52 (48%) animals trapped at swine farms, 6/69 (9%) animals trapped in residential areas, 3/20 (15%) animals trapped at landfills, and 1/22 (5%) animals trapped in natural habitats. Animals trapped on farms were significantly more likely to carry E. coli isolates with resistance to tetracycline, ampicillin, sulfisoxazole, and streptomycin than animals trapped in residential areas. The resistance genes sul2, aadA, and tet(A) were significantly more likely to be detected in E. coli isolates from animals trapped on farms than from those trapped in residential areas. Three S. enterica serotypes (Give, Typhimurium, and Newport) were recovered from the feces of 4/302 (1%) wild small mammals. All Salmonella isolates were pansusceptible. Our results show that swine farm origin is significantly associated with the presence of resistant bacteria and resistance genes in wild small mammals in southern Ontario, Canada. However, resistant fecal bacteria were found in small mammals living in all environments studied, indicating that environmental exposure to antimicrobials, antimicrobial residues, resistant bacteria, or resistance genes is widespread.  相似文献   

17.
AIM: To compare the incidence of antimicrobial resistance among Salmonella serotypes isolated in a pig slaughterhouse in Zaragoza (Spain) during 1993 and 2001. METHODS AND RESULTS: A total of 168 isolates representing 10 serotypes were examined by disc diffusion method using 17 antibiotics. Data showed that the majority of the strains were resistant to streptomycin (97%), sulfadiazine (93.4%) and tetracycline (83.3%). A large proportion of the collection was multidrug resistant (MDR, resistance to four or more antibiotics) with a greater incidence in 2001. The findings imply an increasing incidence of MDR amongst S. Typhimurium, and all S. Typhimurium-definitive phage type (DT) 104 isolates were resistant to ampicillin, chloramphenicol, streptomycin, sulphonamide and tetracycline (R-ACSSuT). This resistance phenotype had spread among other phage and serotypes. Salmonella Ohio was also a MDR serotype and this is not a serotype normally associated with drug resistance. CONCLUSIONS: A large proportion of the strains were MDR and this showed that pork products could be a potential vehicle of MDR Salmonella food-borne infections. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings may have significant public health consequences and could contribute to the development of useful practices aimed at limiting the transmission of MDR Salmonella serotypes through the food chain.  相似文献   

18.
The clonal relationship among Salmonella enterica serotype Typhimurium isolates from selected pig production units in Denmark was investigated by the pulsed field gel electrophoresis (PFGE) typing method to determine environmental survival and spread of Salmonella in different herds. Thirty-four Typhimurium isolated during 1996-1998 from porcine faeces and environmental samples from three pig farms designated 1, 3 and 5 were characterised by PFGE using two restriction enzymes. Farm 5 supplied piglets to farm 1 and the herds were located close to each other. Results of PFGE analysis showed both intra- and inter-relationships, i.e. identical PFGE patterns among the faecal and environmental isolates from farm 1 and farm 5. All the isolates from farm 3 irrespective of the source showed identical PFGE patterns, but were different from samples from farms 1 and 5. This study indicates spread between farms and survival of a farm-specific clone. Furthermore, identical PFGE patterns of isolates from piglet supplier and finisher herds indicate that the farrow-to-grower herd of farm 5 was sub-clinically infected prior to delivery to farm 1 and thereby caused the transmission of Salmonella.  相似文献   

19.
A database was constructed consisting of 45,923 Salmonella pulsed-field gel electrophoresis (PFGE) patterns. The patterns, randomly selected from all submissions to CDC PulseNet during 2005 to 2010, included the 20 most frequent serotypes and 12 less frequent serotypes. Meta-analysis was applied to all of the PFGE patterns in the database. In the range of 20 to 1100 kb, serotype Enteritidis averaged the fewest bands at 12 bands and Paratyphi A the most with 19, with most serotypes in the 13−15 range among the 32 serptypes. The 10 most frequent bands for each of the 32 serotypes were sorted and distinguished, and the results were in concordance with those from distance matrix and two-way hierarchical cluster analyses of the patterns in the database. The hierarchical cluster analysis divided the 32 serotypes into three major groups according to dissimilarity measures, and revealed for the first time the similarities among the PFGE patterns of serotype Saintpaul to serotypes Typhimurium, Typhimurium var. 5-, and I 4,[5],12:i:-; of serotype Hadar to serotype Infantis; and of serotype Muenchen to serotype Newport. The results of the meta-analysis indicated that the pattern similarities/dissimilarities determined the serotype discrimination of PFGE method, and that the possible PFGE markers may have utility for serotype identification. The presence of distinct, serotype specific patterns may provide useful information to aid in the distribution of serotypes in the population and potentially reduce the need for laborious analyses, such as traditional serotyping.  相似文献   

20.
Salmonellosis is a major contributor to the global public health burden. Salmonella enterica serotype Newport has ranked among three Salmonella serotypes most commonly associated with food-borne outbreaks in the United States. It was thought to be polyphyletic and composed of independent lineages. Here we report draft genomes of eight strains of S. Newport from diverse hosts and locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号