首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The basis for disruption of morphogenesis by depletion of pyridoxine derivatives was studied using a pdxH null mutant of Escherichia coli K-12. Removal of pyridoxal from growing cultures severely inhibited murein synthesis in vivo, whereas simultaneous supplementation with d-alanine effectively prevented inhibition. Extractable alanine racemase was low following such starvation. Selection of mutants overcoming the glycine- or temperature-sensitivity imposed by pyridoxine limitation yielded a variety of phenotypes. The most effective of these extragenic suppressors conferred an elevated alanine racemase activity which was resistant to the effects of pyridoxal removal.Abbreviations Glys glycine-sensitive phenotype - Ts temperature-sensitive phenotype - DAP 2,6-diaminopimelic acid - SDS sodium dodecylsulfate  相似文献   

2.
Zusammenfassung Das Murein (Peptidoglycan) von 6 Stämmen Lactobacillus bifidus, die aus der Faeces von Brustkindern oder aus dem Darminhalt von Bienen isoliert worden waren, wies folgendes Molverhältnis auf (auf- bzw. abgerundete Zahlen): Mur:GlcNH2:Ala:Glu:Lys:Gly=1:1:2:1:1:1. Das Verhältnis l-Ala: d-Ala=1,1:1. Glutaminsäure liegt als Amid vor.Durch die Analyse der Peptide des Partialhydrolysats konnte folgende Aminosäuresequenz erschlossen werden: Das Tetrapeptid besitzt wie bei den meisten Bakterien die übliche Sequenz l-Ala-d-Glu-l-Lys-d-Ala. Glycin ist einerseits an die -Aminogruppe des Lysins, andererseits an die Carboxylgruppe des C-terminalen d-Alanins gebunden und stellt somit die Quervernetzung des Mureins her. Die Dinitrophenylierung der Zellwand ergab, daß rund 50% des Glycins und einige Prozent des Lysins eine freie Aminogruppe tragen. Die Quervernetzung ist demnach nur zu rund 50% durchgeführt.
The amino acid sequence of the glycine containing murein of some strains of Lactobacillus bifidus
Summary The murein (peptidoglycan) of 6 strains of L. bifidus, isolated from faeces of breast fed infants or from the intestine of bees, respectively, contained muramic acid, glucosamine, alanine, glutamic acid, lysine and glycine at a molar ratio of 1:1:2:1:1:1. The ratio of l-alanine: d-alanine is 1,1: 1. The analysis of the peptides obtained by acid partial hydrolysis indicated that the amino acid sequence of the tetrapeptide is identical with that of most bacteria (l-Ala-d-Glu-l-Lys-d-Ala). Glutamic acid is present as an amide.Glycine is involved in the crosslinking of adjacent muropeptides by forming a bridge between the -aminogroup of lysine and the carboxyl group of a C-terminal d-alanine. About 50% of the glycine is N-terminal, indicating that only 50% of the possible cross linkages are realized.The murein of these strains of L. bifidus resembles the murein of staphylococci, but differs by the number of glycine molecules. While a pentameric glycylpeptide occurs in the murein of staphylococci, only one molecule of glycine is involved in the crosslinkage of the murein described here.
  相似文献   

3.
Zusammenfassung Das Murein (Peptidoglycan) eines aus Faeces isolierten Streptococcus, der in den wichtigsten Merkmalen mit Peptostreptococcus evolutus (Prevot) Smith übereinstimmt, weist folgende Molverhältnisse auf (aufgerundete bzw. abgerundete Zahlen): Mur:GlcNH2:Ala:Glu:Lys:Gly=1:1:3:1:1:1. Das Verhältnis l-Alanin:d-Alanin=2,15:1. Die Glutaminsäure liegt in der d-Konfiguration und als Amid vor.Durch die Partialhydrolyse der Zellwände und die anschließende Isolierung und Identifizierung der Peptide konnte die Aminosäuresequenz des Mureins geklärt werden. Das Tetrapeptid stimmt mit der üblichen Sequenz l-Ala-d-Glu-NH2-l-Lys-d-Ala der meisten übrigen Bakterien überein. Die Quervernetzung des Mureins wird durch das Peptid Glycyl-l-Alanin hergestellt, wobei l-Alanin an die -Aminogruppe des Lysins gebunden ist. Die Dinitrophenylierung der Zellwand ergab, daß 35% des Glycins und 6% des Lysins eine freie Aminogruppe aufweisen. Die Quervernetzung ist demnach nur zu höchstens 60% durchgeführt.
The chemical composition of the cell walls of Streptococci III. The amino acid sequence of a glycine containing murein from Peptostreptococcus evolutus (Prevot) Smith
Summary Peptostreptococcus evolutus was isolated from feces. Its murein containes muramic acid, glucosamine, alanine, d-glutamic acid, lysine and glycine at a molar ratio of about 1:1:3:1:1:1. The ratio of l-alanine: d-alanine is 2,15:1. Glutamic acid is present as an amide.By acid partial hydrolysis of the cell walls and subsequent isolation and identification of the peptides the amino acid sequence of the murein was elucidated. The tetrapeptide is identical with that of most bacteria (l-Ala-d-Glu-NH2-l-Lys-d-Ala). The crosslinking of the murein is performed by the peptide glycyl-l-alanine. l-alanine is attached to the -amino group of lysine while the amino group of glycine is bound to the carboxyl group of the c-terminal d-alanine of an adjacent tetrapeptide. About 35% glycine and 6% lysine of the murein are dinitrophenylisable indicating that maximally 60% of the possible cross-linkages are realized.
  相似文献   

4.
ETB, ether treated bacteria, from E. coli and other Gram-negative strains, contain in a cell-free system all enzymes necessary for murein biosynthesis. Starting with a variety of combinations of peptidoglycan precursors, high yields of sodium dodecylsulfate (SDS, 4%) insoluble murein or murein like material were synthesized. The amount of newly synthesized SDS insoluble material (NSM) was dependent upon the growing phase at which cells had been harvested for preparation of ETB. This data may provide some insight into the regulation of peptidoglycan biosynthesis.Starting from early peptidoglycan precursors, the cell-free synthesis of NSM was inhibited by specific inhibitors of murein synthesis, such as D-cycloserine, D-fluoroalanine, 2-amino-ethylphosphonate, analogues of D-alanyl-D-alanine and -lactam antibiotics at appropriate concentrations. Some D-alanyl-D-alanine analogues and 4-chlorodiaminopimelic acid were incorporated into NSM in place of their corresponding natural substrates.Abbreviations ETB ether treated bacteria (E. coli) - NSM newly synthesized SDS insoluble material - SDS sodium dodecylsulfate - UDP-MAG UDP-MurNAc-dipeptide, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate - UDP-MAGD UDP-MurNAc-tripeptide, UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimelate - UDP-MAGDAA UDP-MurNAc-pentapeptide, UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine - GINAc N-Acetylglucosamine Definitions Murein highly cross-linked bagshaped peptidoglycan (Weidel and Pelzer 1964)  相似文献   

5.
l-2-Aminobutyric acid can be synthesized in a transamination reaction from l-threonine and l-aspartic acid as substrates by the action of threonine deaminase and aromatic aminotransferase, but the by-product l-alanine was produced simultaneously. A small amount of l-alanine increased the complexity of the l-2-aminobutyric acid recovery process because of their extreme similarity in physical and chemical properties. Acetolactate synthase has been introduced to remove the pyruvate intermediate for reducing the l-alanine concentration partially. To eliminate the remnant l-alanine, alanine racemase of Bacillus subtilis in combination with d-amino acid oxidase of Rhodotorula gracilis or Trigonopsis variabilis respectively was introduced into the reaction system for the l-2-aminobutyric acid synthesis. l-Alanine could be completely removed by the action of alanine racemase of B. subtilis and d-amino acid oxidase of R. gracilis; thereby, high-purity l-2-aminobutyric acid was achieved. The results revealed that alanine racemase could discriminate effectively between l-alanine and l-2-aminobutyric acid, and selectively catalyzed l-alanine to d-alanine reversibly. d-Amino acid oxidase then catalyzed d-alanine to pyruvate stereoselectively. Furthermore, this method was also successfully used to remove the by-product l-alanine in the production of other neutral amino acids such as l-tertiary leucine and l-valine, suggesting that multienzymatic whole-cell catalysis can be employed to provide high purity products.  相似文献   

6.
The chemoautotrophic symbiont-bearing clam Lucinoma aequizonata contains very high levels of free d-alanine in all tissues. The possible sources for this amino acid and its involvement in the clams' metabolism were investigated. Very low levels of d-alanine (generally below 1 mol·l-1) were measured in the sediment porewaters from the habitat of the clams. Experiments with 14C-labeled tracers demonstrate an active metabolism of d-alanine in the clams rather than a role as inert waste product. d-alanine is metabolized at about 0.12 mol·g fw-1·h-1. Label from aspartate, but not glucose and CO2, is incorporated into d-alanine. Incubation with labeled d-alanine did not result in formation of radioactive l-alanine. Tests for alanine racemase (EC 5.1.1.1) and d-amino acid oxidase (EC 1.4.3.3.) did not show activity in either gill, i.e. symbiont and host, or foot tissue. d-Alanine amino transferase (EC 2.6.1.b.) was demonstrated in gill and foot tissues. Two sources for d-alanine are proposed: a degradation of cell walls of symbiotic bacteria and production by the host using a d-specific alanine transaminase.Abbreviations aa amino acid(s) - fw fresh weight - HPLC high-performance liquid chromatography - MBH methyl benzethonium hydroxyde - NAC N-acetyl-l-cysteine - OPA ortho-phthaldialdehyde - TCA tricarbonic acid  相似文献   

7.
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation. Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced 1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g g−1 glucose) with a chiral purity greater than 99.5% l-alanine. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Murein hydrolases cleave bonds in the bacterial exoskeleton, the murein (peptidoglycan) sacculus, a covalently closed bag-shaped polymer made of glycan strands that are crosslinked by peptides. During growth and division of a bacterial cell, these enzymes are involved in the controlled metabolism of the murein sacculus. Murein hydrolases are believed to function as pacemaker enzymes for the enlargement of the murein sacculus since opening of bonds in the murein net is needed to allow the insertion of new subunits into the sacculus. Furthermore, they are responsible for splitting the septum during cell division. The murein turnover products that are released during growth are further degraded by these hydrolases to products that can be recycled by the biosynthetic enzymes. As potentially suicidal (autolytic) enzymes, murein hydrolases must be strictly controlled by the cell, Inhibition of murein synthesis, for example by penicillin, triggers an unbalanced action of murein hydrolases causing bacteriolysis. InEscherichia coli, 14 different murein hydrolases have so far been identified, includingN-acetylmuramyl-l-alanine amidases,dd-endopeptidases,dd-carboxypeptidases,ld-carboxypeptidases, andN-acetylglucosaminidases. In addition lysozyme-like enzymes, called “lytic transglycosylases,” produce (1→6)-anhydromuramic acid derivatives by an intramolecular transglycosylation reaction.  相似文献   

9.
The efficacy of recombinant Lactococcus lactis as a delivery vehicle for a rotavirus antigen was evaluated in a mouse model. The rotavirus VP8* protein was expressed intracellularly and extracellularly in L. lactis wild type and in an alr mutant deficient in alanine racemase activity, necessary for the synthesis of the cell-wall component d-alanine. When the mucosal immune response was evaluated by measuring VP8*-specific IgA antibody in faeces, wild-type L. lactis triggered a low IgA synthesis only when the secreting strain was used. In contrast, VP8*-specific IgA was detected in faeces of both groups of mice orally given the alr mutant expressing extracellular VP8* and intracellular VP8*, which reached levels similar to that obtained with the wild type secreting strain. However, oral administration of the recombinant strains did not induce serum IgG or IgA responses. L. lactis cell-wall mutants may therefore provide certain advantages when low-antigenic proteins are expressed intracellularly. However, the low immune response obtained by using this antigen-bacterial host combination prompts to the use of new strains and vaccination protocols in order to develop acceptable rotavirus immunization levels.  相似文献   

10.
An enzyme was identified in human serum which unlike lysozyme cleaved the amide bond between N-acetyl-muramic acid and l-alanine of the peptide side chain of the rigid layer (murein) of Escherichia coli. The N-acetylmuramyl-l-alanine amidase released all of the peptide side chains including those to which the lipoprotein is bound. A portion of the peptide side chains of the Micrococcus lysodeikticus murein was also hydrolysed from the polysaccharide chains. E. coli, M. lysodeikticus, Bacillus subtilis and Staphylococcus aureus were not killed by the amidase. Treatment of E. coli with EDTA or osmotic shock rendered the cells sensitive to the amidase and they were killed. Possible biological functions of the amidase are discussed.The enzyme was separated from lysozyme in human serum. Gel permeation chromatography indicated a molecular weight of the active enzyme of 82,000 while gel electrophoresis in the presence of sodium dodecyl sulfate revealed a molecular weight of 75,000. Thus, the enzyme probably consists of a single polypeptide chain. Incubation with neuraminidase rendered the amidase more basic suggesting the release of sialic acid residues. The modified glycoprotein disclosed an increased activity to murein. Enzyme activity was inhibited by p-chloromercuribenzene sulfonate and ethyleneglycol-bis(2-aminomethyl) tetraacetate (EGTA) at 1 and 0.2 mM concentration, respectively, whereas EDTA up to 5 mM was without effect. The amidase was also inactivated by agents that reduce disulfide bridges.  相似文献   

11.
Zusammenfassung Das Murein (Peptidoglycan) von Lactobacillus coprophilus enthält Muraminsäure, Glucosamin, Glutaminsäure, Lysin und Alanin in einem molaren Verhältnis von etwa 1:1:1:1:3,3. Das Verhältnis d-Ala: l-Ala beträgt 1:3. Die Aminosäuresequenz der Muropeptide ist wie bei den meisten bisher untersuchten Bakterien l-Ala, d-Glu, l-Lys-d-Ala. Die Glutaminsäure liegt dabei als Amid vor.Die Querverbindung erfolgt durch das Dipeptid l-Alanyl-l-Alanin, das einerseits an die -Aminogruppe des Lysins, andererseits an die Carboxylgruppe des d-Alanins eines benachbarten Muropeptides gebunden ist. Im fertigen Murein sind rund 4% der -Aminogruppen des Lysins und 7,5% der Aminogruppe des Alanins, das sind 30% des N-terminalen l-Alanins der Brückenpeptide, frei. Die Quervernetzung ist demnach nur zu rund 70% verwirklicht.
The amino acid sequence of the murein of Lactobacillus coprophilus
Summary The murein (peptidoglycan) of Lactobacillus coprophilus contains muramic acid, glucosamine, glutamic acid, lysine and alanine in a molar ratio of about 1:1:1:1:3.3. The ratio of d-/l-alanine is 1:3.1. The amino acid sequence of the muropeptides is identical with that of most bacteria (l-Ala-d-Glu-l-Lys-d-Ala). Glutamic acid is present as an amide.The dipeptide l-alanyl-l-alanine is involved in the cross linking of adjacent muropeptides, by forming a bridge between the -amino group of lysine and the carboxyl group of a C-terminal d-alanine.About 4% of the -amino groups of lysine and 7.5% of the amino groups of alanine (i.e. 30% of the N-terminal l-alanine of the crosslinking-peptides) are free. This indicates, that only 70% of the possible cross-linkages are realized.
  相似文献   

12.
Pseudomonas aeruginosa PA01 was found to utilise both thed- andl-isomers of -alanine and also -alanine as sole sources of carbon and energy for growth. Enzymological studies of wild-type cultures and comparison with mutants deficient in growth upon one or more isomers of alanine led to the following conclusions: (i) utilisation ofd-alanine involved its direct oxidation by an inducible, membrane-bound, cytochrome-linked dehydrogenase; (ii) utilisation ofl-alanine required its conversion to the directly oxidisabled-form by a soluble racemase; (iii) utilisation of -alanine, likel-alanine, involves both the racemase andd-alanine dehydrogenase enzymes, but in addition must involve other enzymes the identity, of which is still speculative; (iv)P. aeruginosa, likeEscherichia coli, appears to take upd-alanine andl-alanine by means of two specific permeases.Abbreviation DCPIP 2,6-dichlorophenol-indophenol  相似文献   

13.
Alanine racemase catalyzes the interconversion of d- and l-alanine and plays an important role in supplying d-alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET–alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His6-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni2+–NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with l-alanine and l-isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0–11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr2+, Mn2+, Co2+, and Ni2+ obviously enhanced enzymatic activity, while the Cu2+ ion showed inhibitory effects.  相似文献   

14.
Summary The presence of an enzyme activity which hydrolyzes glycyl-d-aspartate was found in the homogenates of pig kidney cortex. The activity was inhibited by metal chelating agents and cilastatin, suggesting that the enzyme was a cilastatin-sensitive metallo-peptidase. Of the two hydrolysis products,d-aspartate was found to be less accumulated than glycine. The fate ofd-aspartate was, therefore, examined and the amino acid was found to be converted tol-aspartate,l-alanine and pyruvate, in the presence ofl-glutamate. Experiments with enzyme inhibitors suggested that the conversion involvedd-aspartate oxidase, aspartate aminotransferase and alanine aminotransferase as well as decarboxylation of oxaloacetate produced fromd-aspartate. All the results indicate that the enzymes in the pig kidney can liberate thed-aspartyl residue in the peptide and convert it to the compounds readily utilizable. The finding suggests a probable metabolic pathway of thed-aspartate-containing peptide.  相似文献   

15.
Yan X  Gai Y  Liang L  Liu G  Tan H 《Archives of microbiology》2007,187(5):371-378
Alanine racemase is a major component of the exosporium of Bacillus cereus spores. A gene homologous to that of alanine racemase (alrA) was cloned from Bacillus thuringiensis subsp. kurstaki, and RT-PCR showed that alrA was transcribed only in the sporulating cells. Disruption of alrA did not affect the growth and sporulation of B. thuringiensis, but promoted l-alanine-induced spore germination. When the spore germination rate was measured by monitoring DPA release, complementation of the alrA disruptant reduced the rate of l-alanine-induced spore germination below that of even wild-type spores. As previously reported for spores of other Bacillus species, d-alanine was an effective and competitive inhibitor of l-alanine-induced germination of B. thuringiensis spores. d-cycloserine alone stimulated inosine-induced germination of B. thuringiensis spores in addition to increasing l-alanine-induced germination by inhibiting alanine racemase. d-Alanine also increased the rate of inosine-induced germination of wild-type spores. However, d-alanine inhibited inosine-induced germination of the alrA disruptant spores. It is possible that AlrA converted d-alanine to l-alanine, and this in turn, stimulated spore germination in B. thuringiensis. These results suggest that alrA plays a crucial role in moderating the germination rate of B. thuringiensis spores.  相似文献   

16.
Zusammenfassung Von L. plantarum und L. inulinus wurden die Zellwände isoliert und durch Inkubation mit Trypsin gereinigt. Durch Extraktion mit TES und Formamid konnte das Murein (Peptidoglycan) bis zu rund 85% der Trockenmasse angereichert werden. Die Zellwände von L. plantarum enthielten rund 30% Teichonsäure des Ribit-Typs, die von L. inulinus waren frei von Teichonsäure.Im Hydrolysat der teichonsäurefreien Zellwände ergaben sich folgende aufbzw. abgerundete Molverhältnisse Mur: GlNH2:Glu:DAPl-Alad-Ala=1:1:1:1:1:0,5. Außerdem waren 2 Mole Ammoniak enthalten, was das Vorliegen von Glu und DAP als Amide anzeigt. Die durch Hemmung mit d-Cycloserin angereicherte unvollständige Mureinvorstufe hatte ein Molverhältnis von UDP:Murl-Ala:Glu:DAP=1:1:1:1:1.Nach Dinitrophenylierung der Zellwand ließen sich rund 50% der gesamten DAP als mono-DNP-DAP nachweisen. Die Hydrazinolyse der Zellwand zum Nachweis C-terminaler Aminosäuren ergab 4% freies DAP und 0,8% freies Alanin.Durch die Analyse der in Partialhydrolysaten der Zellwand auftretenden Peptide konnte die folgende Aminosäuresequenz des an die Muraminsäure gebundenen Tetrapeptides bestimmt werden: l-Ala-d-Glu-l-Lys-d-Ala. Im Murein ist vermutlich nur etwa die Hälfte der Muraminsäure mit einem Tetrapeptid, die andere Hälfte mit einem Tripeptid, dessen d-Alanin fehlt, substituiert.Die Quervernetzung erfolgt zwischen der 2. Aminogruppe der DAP und der Carboxylgruppe des d-Alanins eines benachbarten Tetrapeptids.
The amino acid sequence of the DAP-containing murein of Lactobacillus plantarum and Lactobacillus inulinus
Summary Cell walls of L. plantarum and L. inulinus were isolated and purified by incubation with trypsin. After extraction with TCA and formamide, 85% of the dry weight consists of murein (peptidoglycan).The cell walls of L. plantarum contained about 30% teichoic acid (ribit-type), whereas no teichoic acid was present in the cell walls of L. inulinus.The quantitative determination of amino sugars and amino acids in the hydrolysate of the cell walls showed the following molar ratios: Mur: Gl-NH2:Glu:DAP l-Alad-Ala=1:1:1:1:1:0.5. In addition, 2 mols of NH3 were found per mol of glutamic acid, indicating, that DAP as well as glutamic acid are present as amides.The UDP-activated cell wall precursor which was accumulated by inhibiting the cells by d-cycloserine showed the following molar ratios: UDP:Murl-Ala: Glu:DAP=1:1:1:1:1.After dinitrophenylation and hydrolysation of the cell wall 50% of the DAP were present as mono-DNP-DAP. Hydrozinolysis of the cell wall yielded 4% free DAP and 0.8% free alanine. This shows that only a very small amount of these amino acids are C-terminal in the whole murein.The analysis of various peptides from acid partial hydrolysates of the cell wall indicates the following amino acid sequence of the tetrapeptides attached to muramic acid: l-Ala-d-Glu-meso-DAP-d-Ala. Only half of the muramic acid molecules are substituted by tetrapeptides, while the other half carries a tripeptide in which the terminal d-alanine is missing.The cross-linking of the muropeptides is achieved by a peptide-bond between the second amino group of DAP and the carboxylgroup of the d-alanine of an adjacent muropeptide.
  相似文献   

17.
Radiolabeled amino acids (l-U[C14]alanine,d-U[C14]alanine,l-U[C14]threonine, andl-U[C14]phenylalanine) were exponentially incorporated into the trichloroacetic acid (TCA)-insoluble material (whole cells) ofMycobacterium avium during the first 30–60 min of labeling. Bacteria labeled for 48 h were extracted with chloroform-methanol (21 vol/vol). The thin layer chromatography (TLC) analysis of native lipids showed that mycoside C was labeled by the amino acids used.d-cycloserine (d-CS) and other amino acid analogs were examined as potential inhibitors of mycoside C biosynthesis. It was found thatd-CS caused about 27% inhibition, whereaso-,p-, andm-fluoro-dl-phenylalanine (Fl-phe) caused 80%–90% inhibition of the mycoside C biosynthesis. Judging from the data on inhibition experiments, it was concluded that the mycoside C biosynthesis started from the fatty acyl end and proceeded by the stepwise addition ofd-phenylalanine,d-allo-threonine, andd-alanine. Thed-alanyl-d-alanine peptidoglycan intermediate did not seem to serve as a donor ofd-alanine for mycoside C biosynthesis. Ultrastructural observation of the bacteria treated withd-CS showed only partial alteration of the outer wall layer, whereasm-Fl-phe treatment caused profound alterations. Successive transfers of the bacteria in growth medium supplemented withm-Fl-phe resulted in extensive disorganization of the outer layer.  相似文献   

18.
Summary The sodium-dependentl-alanine transport across the plasma membrane of oocytes ofXenopus laevis was studied by means of [14C]-l-alanine,22Na+ and electrophysiological measurements. At fixed sodium concentrations, the dependence of alanine transport on alanine concentration follows Michaelis-Menten kinetics; at fixed alanine concentrations, the transport varies with sodium concentration with a Hill coefficient of 2. In the presence of sodium the uptake of alanine is accompanied by a depolarization of the membrane. Under voltage-clamp conditions this depolarization can be compensated by an inward-directed current. Assuming that this current is carried by sodium we arrive at a 21 stoichiometry for the sodium-alanine cotransport. The assumption was confirmed by direct measurements of both sodium and alanine fluxes at saturating concentrations of the two substrates, which also yielded a stoichiometry close to 21. The sodium-l-alanine cotransport is neither inhibited by furosemide (0.5 mmol/liter) nor by N-methyl amino isobutyric acid (5 mmol/liter). A 20-fold excess ofd-alanine overl-alanine caused about 60% inhibition.  相似文献   

19.
d-Cysteine desulfhydrase of Escherichia coli W3110 trpED102/F trpED102 was physiologically characterized. It was found to be located in the cytosolic fraction, as 3-chloro-d-alanine dehydrochlorinase is. d-Cysteine desulfhydrase catalyzed not only the ,-elimination reaction of O-acetyl-d-serine to form pyruvate, acetic acid and ammonia, but also the -replacement reaction of O-acetyl-d-serine with sulfide to form d-cysteine. However, these reactions appeared not to proceed in vivo. No other activity of d-cysteine synthesis from O-acetyl-d-serine and sulfide was detected in a crude cell extract of E. coli which was immunotitrated with antibodies raised against the purified d-cysteine desulfhydrase. Although d-cysteine desulfhydrase catalyzes the degradation (,-elimination reaction) of 3-chloro-d-alanine, which is an effective antibacterial agent, E. coli W3110 trpED102/F trpED102 did not show resistance against 3-chloro-d-alanine. Therefore, d-cysteine desulfhydrase does not contribute to 3-chloro-d-alanine detoxification in vivo.  相似文献   

20.
Summary To develop a practical process for d-alanine production from dl-alanine, we screened 107 yeasts for their asymmetric degrading activity against dl-alanine. Candida maltosa JCM1504 degraded the l-isomer ten times more rapidly than the d-isomer. The cells of this strain were used as a biocatalyst for eliminating the l-isomer. However, when the degradation reaction was conducted in the presence of a high concentration of dl-alanine, the pH of the reaction mixture was rapidly increased by the liberation of ammonia from l-alanine, and consequently the reaction stopped. This hindrance was overcome by controlling the pH value at 6.0 with H2SO4 during the reaction. Additionally, we found that the maximum rate of l-isomer degradation was obtained at 30° C and pH 6.0 under conditions of high aeration (1.0 vvm) and agitation (1200 rpm). Under the optimal conditions, the l-isomer of 200 g dl-alanine/l was completely degraded within 40 h and 90 g d-alanine/l remained in the reaction mixture. d-Alanine was easily isolated from the reaction mixture. The chemical and optical purity of the d-isomer product so obtained was 99.0% and 99.9% enantiomeric excess, respectively.Offprint requests to: I. Umemura  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号