首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T-cell receptor (TCR) BV gene of human TCR AV24+ double-negative (DN) T cells, a novel subset of natural killer (NK) T cells, was investigated by single-cell sorting and single-cell polymerase chain reaction (PCR) methods. Seven of eleven TCR AV24+ DN T-cell clones utilized TCR BV8, three BV9, and one BV6. Six of seven TCR AV24/BV8+ DN T-cell clones had identical TCR beta and alpha chains, indicating that they were the same clone. All three TCR AV24/BV9+ DN T-cell clones also demonstrated the same amino acids in the CDR3 region. These findings strongly suggest that the usage of TCR beta and alpha chains on TCR AV24+ DN T cells is extremely restricted, supporting the notion that these cells recognize highly limited T-cell epitopes on antigens. All TCR AV24+ clones expressed the NKR-P1A mRNA, and so were true NK T cells. IL-2 and IL-4 mRNAs were detected in all clones, suggesting that the majority of these cells were Th0-type T cells. Six clones overexpressed Fas-ligand (Fas-L) mRNA and Fas antigen was detected on all clones at the mRNA level. In conclusion, TCR AV24+ DN T cells might recognize restricted T-cell epitopes on antigens and function as Th0-type T cells, inducer cells to Th1- or Th2-type T cells (regulatory T cells), and as Fas-L-positive cytolytic T cells.  相似文献   

2.
Understanding the process of inducing T cell activation has been hampered by the complex interactions between APC and inflammatory Th1 cells. To dissociate Ag-specific signaling through the TCR from costimulatory signaling, rTCR ligands (RTL) containing the alpha1 and beta1 domains of HLA-DR2b (DRA*0101:DRB1*1501) covalently linked with either the myelin basic protein peptide 85-99 (RTL303) or CABL-b3a2 (RTL311) peptides were constructed to provide a minimal ligand for peptide-specific TCRs. When incubated with peptide-specific Th1 cell clones in the absence of APC or costimulatory molecules, only the cognate RTL induced partial activation through the TCR. This partial activation included rapid TCR zeta-chain phosphorylation, calcium mobilization, and reduced extracellular signal-related kinase activity, as well as IL-10 production, but not proliferation or other obvious phenotypic changes. On restimulation with APC/peptide, the RTL-pretreated Th1 clones had reduced proliferation and secreted less IFN-gamma; IL-10 production persisted. These findings reveal for the first time the rudimentary signaling pattern delivered by initial engagement of the external TCR interface, which is further supplemented by coactivation molecules. Activation with RTLs provides a novel strategy for generating autoantigen-specific bystander suppression useful for treatment of complex autoimmune diseases.  相似文献   

3.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are required to restrain the immune system from mounting an autoaggressive systemic inflammatory response, but why their activity can prevent (or allow) organ-specific autoimmunity remains poorly understood. We have examined how TCR specificity contributes to Treg activity using a mouse model of spontaneous autoimmune arthritis, in which CD4(+) T cells expressing a clonotypic TCR induce disease by an IL-17-dependent mechanism. Administration of polyclonal Tregs suppressed Th17 cell formation and prevented arthritis development; notably, Tregs expressing the clonotypic TCR did not. These clonotypic Tregs exerted Ag-specific suppression of effector CD4(+) T cells using the clonotypic TCR in vivo, but failed to mediate bystander suppression and did not prevent Th17 cells using nonclonotypic TCRs from accumulating in joint-draining lymph nodes of arthritic mice. These studies indicate that the availability of Tregs with diverse TCR specificities can be crucial to their activity in autoimmune arthritis.  相似文献   

4.
Oral tolerance is a long recognized method to induce peripheral immune tolerance. Oral tolerance has been used successfully to treat animal models of autoimmune diseases and is being tested in human diseases. Low doses of oral antigen induce active suppression, whereas high doses induce clonal anergy and deletion. Oral antigen preferentially generates a Th2(IL-4/IL-10)- or a Th3(TGF-beta)-type response. Th3-type cells are a unique T-cell subset which primarily secrete TGF-beta, provide help for IgA and have suppressive properties for Th1 and other immune cells. Th3-type cells appear distinct from the Th2 cells as CD4(+) TGF-beta-secreting cells with suppressive properties in the gut have been generated from IL-4-deficient animals. In vitro differentiation of Th3-type cells from Th0 precursors from TCR transgenic mice is enhanced by culture with TGF-beta, IL-4, IL-10 and anti-IL-12. Because regulatory T cells generated by oral antigen are triggered in an antigen-specific fashion but suppress in an antigen-nonspecific fashion, they mediate bystander suppression when they encounter the fed autoantigen at the target organ. Thus, mucosal tolerance can be used to treat inflammatory processes that are not autoimmune in nature. Mucosal antigen has also been used to treat animal models of stroke and of Alzheimer's disease. Induction of low-dose oral tolerance is enhanced by oral administration of IL-4 and IL-10. Coupling antigen to CTB or administration of Flt-3 ligand enhances oral tolerance. Anti-B7.2 but not anti-B7.1 blocks low-dose, but not high-dose oral tolerance. High-dose oral tolerance is blocked by anti-CTLA-4. CD25(+) CD4(+) regulatory T-cell function also appears to be related to TFG-beta.  相似文献   

5.
Regulatory T cells (Tregs) contribute significantly to the tolerogenic nature of the liver. The mechanisms, however, underlying liver-associated Treg induction are still elusive. We recently identified the vitamin A metabolite, retinoic acid (RA), as a key controller that promotes TGF-β-dependent Foxp3(+) Treg induction but inhibits TGF-β-driven Th17 differentiation. To investigate whether the RA producing hepatic stellate cells (HSC) are part of the liver tolerance mechanism, we investigated the ability of HSC to function as regulatory APC. Different from previous reports, we found that highly purified HSC did not express costimulatory molecules and only upregulated MHC class II after in vitro culture in the presence of exogenous IFN-γ. Consistent with an insufficient APC function, HSC failed to stimulate naive OT-II TCR transgenic CD4(+) T cells and only moderately stimulated α-galactosylceramide-primed invariant NKT cells. In contrast, HSC functioned as regulatory bystanders and promoted enhanced Foxp3 induction by OT-II TCR transgenic T cells primed by spleen dendritic cells, whereas they greatly inhibited the Th17 differentiation. Furthermore, the regulatory bystander capacity of the HSC was completely dependent on their ability to produce RA. Our data thus suggest that HSC can function as regulatory bystanders, and therefore, by promoting Tregs and suppressing Th17 differentiation, they might represent key players in the mechanism that drives liver-induced tolerance.  相似文献   

6.
Interleukin-22 (IL-22) is an IL-10 family cytokine member that was recently discovered to be mainly produced by Th17 cells. Previous studies have indicated the importance of IL-22 in host defense against Gram-negative bacterial organisms (in gut and lung). Recently, there is emerging evidence that IL-22 is involved in the development and pathogenesis of several autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), Sjögren's syndrome (SS) and psoriasis. Therapeutics targeting IL-22 therefore may have promise for treating various autoimmune diseases. In this review, we discuss the recent progression of the involvement of IL-22 in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.  相似文献   

7.
D Sun 《Cellular immunology》1992,141(1):200-210
Subpathogenic doses of syngeneic autoreactive T cells protect experimental animals against associated autoimmune disease. Preferential use of the TCR of encephalitogenic T cells suggests that this molecule serves as the target for immunoregulation in experimental autoimmune encephalomyelitis (EAE). Whether peptides derived from the V beta 8 of the rat TCR elicit regulatory T cells and produce the same vaccinating effect against EAE as do whole T cells remains unknown. Here we show that immunization of Lewis rats with V beta 8(39-59), a peptide representing residues 39 to 59 of the rat V beta 8 TCR, does not induce the production of regulatory T cells reactive to the intact TCR V beta 8 containing this sequence. Moreover, animals that had recovered from both actively induced EAE and transferred EAE did not generate regulatory T cells that recognized the V beta 8(39-59) peptide. Further, transfusion of large doses of peptide-specific T cells did not protect the animals from EAE. Our results suggest that the V beta 8(39-59) peptide may comprise so-called cryptic epitopes, which function as immunogens only when dissociated from large protein complexes.  相似文献   

8.
Th17细胞和Treg细胞是CD4+T细胞在不同细胞因子环境中分化出的新亚群,发挥不同的生物学效应,使机体的免疫系统处于平衡状态.Th17/Treg细胞失衡可引起一系列自身免疫性疾病.银屑病是与遗传、免疫异常有关的皮肤炎症性疾病,其发病机制尚不清楚.越来越多的研究发现,Th17细胞增多和Treg细胞减少及其分泌的细胞因子在银屑病的发病中有着重要作用.本文围绕这一机制综述了近年来有关Th17细胞、Treg细胞在银屑病发病机制中作用的研究,帮助我们更深入地了解银屑病的发病机制并为今后临床诊断和治疗提供依据.  相似文献   

9.
We have previously shown that invariant Vα19-Jα33 TCR(+) (Vα19i T) cells suppress the disease progress in some models for organ specific autoimmune diseases and type IV allergy that deteriorate along with decline to excess in Th1- or Th17- immunity. In this study, we examined the effects of over-generation of Vα19i T cells on the Th2-controlled immunoglobulin isotype production in the models for type I allergy. IgE production by invariant Vα19-Jα33 TCR transgenic (Tg) mice was suppressed compared with that by non-Tg controls following administration with goat anti-mouse IgD antiserum or OVA, while IgG2a production was not influenced by the introduction of the transgene into the recipients. IgE production by wild type mice was similarly reduced when they were subjected to adoptive transfer with invariant Vα19-Jα33 TCR Tg(+) but not Tg(-) cells prior to immunization. Furthermore, the suppression of IgE production by these recipients was enhanced when they were previously administered with a Vα19i T cell activator, one of the modified α-mannosyl ceramides. In summary, it is suggested that Vα19i T cells have potential to participate in the homeostasis of immunity and that they suppress disease progression resulting from not only Th1- but also Th2- immunity excess.  相似文献   

10.
11.
T cell responses to myelin basic protein (MBP) are potentially involved in the pathogenesis of multiple sclerosis (MS). Immunization with irradiated MBP-reactive T cells (T cell vaccination) induces anti-idiotypic T cell responses that suppress circulating MBP-reactive T cells. This T cell-T cell interaction is thought to involve the recognition of TCR expressed on target T cells. The study was undertaken to define the idiotypic determinants responsible for triggering CD8+ cytotoxic anti-idiotypic T cell responses by T cell vaccination in patients with MS. A panel of 9-mer synthetic TCR peptides corresponding to complementarity-determining region 2 (CDR2) and CDR3 of the immunizing MBP-reactive T cell clones were used to isolate anti-idiotypic T cell lines from immunized MS patients. The resulting TCR-specific T cell lines expressed exclusively the CD8 phenotype and recognized preferentially the CDR3 peptides. CDR3-specific T cell lines were found to lyze specifically autologous immunizing MBP-reactive T cell clones. The findings suggest that CDR3-specific T cells represented anti-idiotypic T cell population induced by T cell vaccination. In contrast, the CDR2 peptides were less immunogenic and contained cryptic determinants as the CDR2-specific T cell lines did not recognize autologous immunizing T cell clones from which the peptide sequence was derived. The study has important implications in our understanding of in vivo idiotypic regulation of autoimmune T cells and the regulatory mechanism underlying T cell vaccination.  相似文献   

12.
Among the different T-cell receptor (TCR) BV20S1 polymorphisms, nucleotide substitution at position 524 results in the introduction of a stop codon, whose potential functional relevance is still unknown. We have recently showed in Sardinian subjects the most elevated allele frequency ever reported worldwide for this “null allele” (0.44). As this variant generates a gap in the TCR repertoire, this preliminary finding prompted us to further analyze the role of this polymorphism in the susceptibility to type 1 diabetes (T1D) and multiple sclerosis (MS), which are extremely common in this population. With this aim, we evaluated the influence of the TCRBV20S1 polymorphism by assessing it with the transmission disequilibirum test (TDT) in 652 T1D and 616 MS families, without detecting any significant difference. We conclude that the high frequency of this null allele in Sardinia is not directly related to the high incidence of these autoimmune diseases observed in this founder population.  相似文献   

13.
The repertoire of CD4+ CD28- T cells in rheumatoid arthritis.   总被引:1,自引:0,他引:1       下载免费PDF全文
BACKGROUND: While oligoclonality of circulating CD4- CD8 and of CD8+ T cells is not uncommon, clonal dominance within the CD4 compartment is not frequently found in healthy individuals. In contrast, the majority of patients with rheumatoid arthritis (RA) have clonally expanded CD4+ T cell populations. Previous studies have demonstrated that these clonogenic CD4+ T cells do not express the CD28 molecule. To examine the correlation between CD28 expression and clonal proliferation, we have analyzed the T cell receptor (TCR) diversity of CD4+ CD28- T cells in normal individuals and in RA patients. MATERIAL AND METHODS: The size of the peripheral blood CD4+ CD28- compartment was determined in 30 healthy individuals and 30 RA patients by two-color FACS analysis. In 10 RA patients and five controls with more than 2.5% CD4+ CD28- T cells, TCR BV gene segment usage was analyzed with 19 BV-specific antibodies. Oligoclonality was assessed in sorted CD4+ CD28+ and CD28- T cells using TCR BV-BC-specific polymerase chain reaction and size fractionation. Clonal dominance was confirmed by direct sequencing. RESULTS: The CD4+ CD28- T cell compartment was expanded to more than 2.5% in 70% of the RA patients and 30% of the normal individuals. Compared with the CD4+ CD28+ T cells, the TCR BV gene segment usage among CD4+ CD28- cells was grossly skewed with the dominance of single BV elements. Molecular TCR analysis provided evidence for oligoclonality in 17 of 21 expanded BV elements. In two unrelated RA patients who shared both HLA-DRB1 alleles, the TCR beta-chain sequences of dominant clonotypes were highly conserved. CONCLUSIONS: Oligoclonality is a characteristic feature of CD4+ CD28- T cells which are expanded in some healthy individuals and in the majority of RA patients. The lack of CD28 expression is a common denominator of CD4+, CD8+, and CD4- CD8- T cells prone to develop clonal dominance. The limited TCR diversity of clonal CD4+ CD28- populations in RA patients suggests that these T cells recognize a limited spectrum of antigens. The fact that the majority of individuals with marked expansions and oligoclonality of CD4+ CD28- T cells are RA patients suggests a role for these unusual lymphocytes in the pathogenetic events leading to RA.  相似文献   

14.
《Bioscience Hypotheses》2008,1(6):332-333
Modulating of Notch signaling using γ-secretase inhibitors in rheumatoid arthritis (RA) might induce a cytokine profile shift in the Th1/Th2 balance and regulatory T cells to control local and systemic autoimmune inflammation, thus, creating a new therapeutic approach for the treatment of RA.  相似文献   

15.
Glatiramer acetate (GA) therapy of patients with multiple sclerosis (MS) represents a unique setting in which in vivo Th2 deviation of T cells is consistently observed and associated with clinical benefit in a human autoimmune disease. We postulated that APCs are important targets of GA therapy and demonstrate that treatment of MS patients with GA reciprocally regulates the IL-10/IL-12 cytokine network of monocytes in vivo. We further show that Th1- or Th2-polarized GA-reactive T cells isolated from untreated or treated MS patients mediate type 1 and 2 APC differentiation of human monocytes, based on their ability to efficiently induce subsequent Th1 and Th2 deviation of naive T cells, respectively. These observations are extended to human microglia, providing the first demonstration of type 2 differentiation of CNS-derived APCs. Finally, we confirm that the fundamental capacity of polarized T cells to reciprocally modulate APC function is not restricted to GA-reactive T cells, thereby defining a novel and dynamic positive feedback loop between human T cell and APC responses. In the context of MS, we propose that GA therapy results in the generation of type 2 APCs, contributing to Th2 deviation both in the periphery and in the CNS of MS patients. In addition to extending insights into the therapeutic mode of action of GA, our findings revisit the concept of bystander suppression and underscore the potential of APCs as attractive targets for therapeutic immune modulation.  相似文献   

16.
Natural killer T (NKT) cells play an important role in controlling cancers, infectious diseases and autoimmune diseases. Although the rhesus macaque is a useful primate model for many human diseases such as infectious and autoimmune diseases, little is known about their NKT cells. We analyzed V alpha 24TCR+ T cells from rhesus macaque peripheral blood mononuclear cells stimulated with alpha-galactosylceramide (alpha-GalCer) and interleukin-2. We found that rhesus macaques possess V alpha 24TCR+ T cells, suggesting that recognition of alpha-GalCer is highly conserved between rhesus macaques and humans. The amino acid sequences of the V-J junction for the V alpha 24TCR of rhesus macaque and human NKT cells are highly conserved (93% similarity), and the CD1d alpha1-alpha2 domains of both species are highly homologous (95.6%). These findings indicate that the rhesus macaque is a useful primate model for understanding the contribution of NKT cells to the control of human diseases.  相似文献   

17.
18.
CD8alphaalpha+CD4-TCRalphabeta+ T cells are a special lineage of T cells found predominantly within the intestine as intraepithelial lymphocytes and have been shown to be involved in the maintenance of immune homeostasis. Although these cells are independent of classical MHC class I (class Ia) molecules, their origin and function in peripheral lymphoid tissues are unknown. We have recently identified a novel subset of nonintestinal CD8alphaalpha+CD4-TCRalphabeta+ regulatory T cells (CD8alphaalpha Tregs) that recognize a TCR peptide from the conserved CDR2 region of the TCR Vbeta8.2-chain in the context of a class Ib molecule, Qa-1a, and control- activated Vbeta8.2+ T cells mediating experimental autoimmune encephalomyelitis. Using flow cytometry, spectratyping, and real-time PCR analysis of T cell clones and short-term lines, we have determined the TCR repertoire of the CD8alphaalpha regulatory T cells (Tregs) and found that they predominantly use the TCR Vbeta6 gene segment. In vivo injection of anti-TCR Vbeta6 mAb results in activation of the CD8alphaalpha Tregs, inhibition of the Th1-like pathogenic response to the immunizing Ag, and protection from experimental autoimmune encephalomyelitis. These data suggest that activation of the CD8alphaalpha Tregs present in peripheral lymphoid organs other than the gut can be exploited for the control of T cell-mediated autoimmune diseases.  相似文献   

19.
Adenovirus vectors are increasingly being used for genetic vaccination and may prove highly suitable for intervention in different pathological conditions due to their capacity to generate high level, transient gene expression. In this study, we report the use of a recombinant adenovirus vector to induce regulatory responses for the prevention of autoimmune diseases through transient expression of a TCR beta-chain. Immunization of B10.PL mice with a recombinant adenovirus expressing the TCR Vbeta8.2 chain (Ad5E1 mVbeta8.2), resulted in induction of regulatory type 1 CD4 T cells, directed against the framework region 3 determinant within the B5 peptide (aa 76-101) of the Vbeta8.2 chain. This determinant is readily processed and displayed in an I-A(u) context, on ambient APC. Transient genetic delivery of the TCR Vbeta8.2 chain protected mice from Ag-induced experimental autoimmune encephalomyelitis. However, when the Ad5E1 mVbeta8.2 vector was coadministered with either an IL-4- or IL-10-expressing vector, regulation was disrupted and disease was exacerbated. These results highlight the importance of the Th1-like cytokine requirement necessary for the generation and activity of effective regulatory T cells in this model of experimental autoimmune encephalomyelitis.  相似文献   

20.
In Lewis rats, immunization with myelin basic protein induces two distinct encephalitogenic T cell populations, those responding to the immunodominant 72-89 epitope and those specific for a secondary epitope including residues 87-99. The 72-89 specific T cells were I-A restricted and preferentially expressed V beta 8.2 in their TCR. To determine the fine specificity, MHC restriction, and TCR V beta gene use in T cells reactive to the secondary epitope, we characterized 23 T cell clones from the lymph nodes (LN) and spinal cords (SC) of rats immunized with either whole basic protein or synthetic peptides S85-99 and S87-99 that were found to be functionally similar. The S85-99/S87-99 specific clones from LN and SC were all encephalitogenic despite differences in recognition of intact basic protein and class II MHC restriction. Unlike LN clones that overexpressed V beta 8 (46%+) and V beta 6 (31%+), however, SC clones were strongly biased (86%+) in their expression of V beta 6. This V gene bias raised the possibility of TCR peptide therapy using V beta 6 peptides. The V beta 6 sequence was similar to V beta 8.2 in the CDR2 region, and the corresponding peptides from this region were found to be cross-reactive in vivo. Moreover, both peptides were effective in the treatment of EAE induced with either S85-99, biased in V beta 6+ and V beta 8+ T cells, or guinea pig basic protein, biased only in V beta 8+ T cells. These data demonstrate the presence of common immunogenic epitopes among subsets of TCR V region gene families that possess important regulatory activity on effector T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号