首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms responsible for the plasma membrane associated block to polyspermy in mouse eggs were studied. Reinsemination experiments using zona-free eggs indicated that, after fertilization, the egg plasma membrane is altered such that sperm binding to the egg plasma membrane is blocked, except in the region of the second polar body. Activation of the egg with either ethanol or strontium chloride did not result in a block to polyspermic penetration, as artificially activated eggs displayed identical penetration levels as to nonactivated control eggs. The penetrability of activated eggs was not altered by the presence or absence of the zona pellucida during activation. Lectin staining for egg cortical granule material indicated that activation did cause cortical granule exocytosis; however, activated eggs remained penetrable. These data support the following conclusions: (1) an alteration in the ability of the egg plasma membrane to allow sperm adherence accounts for the block to polyspermy; (2) establishment of the plasma membrane block to polyspermy is sperm dependent, since artificial egg activation does not result in a block response; (3) the contents of the egg's cortical granules do not play a role in the establishment of the plasmalemma block response. © 1993 Wiley-Liss, Inc.  相似文献   

2.
We have succeeded in reconstituting an exocytotically active egg cortex fraction by recombining purified cortical vesicles (CVs) with egg plasma membrane (PM). CVs were dislodged from a suspension of egg cortex by gentle homogenization in a dissociative buffer with a pH of 9.1, and purified by two rounds of differential centrifugation. Egg PM was prepared by shearing the cortical vesicles from a cortical lawn preparation with a jet of isotonic buffer. PM lawns produced by this procedure consist of an array of CV-free PM fragments attached via their extracellular surface to a polylysine coated glass slide. When a neutralized suspension of CVs was recombined with a PM lawn, CVs reassociated with the cytoplasmic face of the plasma membrane to form a reconstituted lawn (RL). RLs undergo a morphological change in response to Ca2+-containing buffers that is similar to the exocytotic release of CV contents from cortical lawns. In both reactions CV contents are vectorially transferred from the cytoplasmic to the extracytoplasmic face of the egg PM. A quantitative binding assay was developed and used to show that adherence of CVs to a heterologous PM lawn prepared from human red blood cells is minimal.  相似文献   

3.
The external and cytoplasmic surfaces of the sea urchin egg at fertilization have been examined with the scanning electron microscope (SEM). The outside events were documented by glueing eggs to polylysine coated glass plates, adding sperm and fixing rapidly. To reveal the inner aspects of the surface as the sperm travels through it to reach the egg cytoplasm, the fertilized egg surface was isolated in 0.3 M KC1, 0.35 M glycine, 2 mM MgCl2, 2 mM EGTA, pH 7.5, glued onto a polylysine-coated plate and processed for the SEM. The events of spermatozoon attachment, membrane fusion, sperm entry, rotation and detachment into the egg cytoplasm as well as the associated cortical changes are described. The egg cortex is revealed to be a uniform network of fibrous bundles.The spermatozoon initially attaches to the egg surface by the acrosomal filament. As membrane fusion occurs between the gametes, the plasma membrane of the egg engulfs the sperm, the cortical granules start to discharge and a spreading surface deformation, possibly caused by a cortical contraction, is initiated. The perpendicularly entering spermatozoon is surrounded by a cluster of elongate microvilli which appear to have 235 nm vesicles associated with their bases. The sperm is prevented by the cortex from directly entering the egg cytoplasm and lies upon the egg surface between the plasma membrane and the matrix of cortical fibers. It is subsequently rotated additionally to enter the egg cytoplasm with the posterior end first. A scar is left in the cortex where the spermatozoon penetrated. The egg cortex is shown to consist of 50–200 nm uniformly arranged fibers, and its thickness ranges from 0.2 to 0.5 μm. It is speculated that this structure may be contractile.  相似文献   

4.
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.  相似文献   

5.
Local actin assembly is associated with sites of exocytosis in processes ranging from phagocytosis to compensatory endocytosis. Here, we examine whether the trigger for actin-coat assembly around exocytosing Xenopus egg cortical granules is 'compartment mixing'--the union of the contents of the plasma membrane with that of the secretory granule membrane. Consistent with this model, compartment mixing occurs on cortical granule-plasma membrane fusion and is required for actin assembly. Compartment mixing triggers actin assembly, at least in part, through diacylglycerol (DAG), which incorporates into the cortical granule membranes from the plasma membrane after cortical granule-plasma membrane fusion. DAG, in turn, directs long-term recruitment of protein kinase Cbeta (PKCbeta) to exocytosing cortical granules, where it is required for activation of Cdc42 localized on the cortical granules. The results demonstrate that mixing of two membrane compartments can direct local actin assembly and indicate that this process is harnessed during Xenopus egg cortical granule exocytosis to drive compensatory endocytosis.  相似文献   

6.
Summary We have examined the cortex of the teleost (Brachydanio rerio) egg before and during exocytosis of cortical granules by scanning, transmission, and freeze-fracture electron microscopy. In the unactivated egg, the P-face of the plasma membrane exhibits a random distribution of intramembranous particles, showing a density of 959/m2 and an average diameter of 8 nm. Particles over P- and E-faces of the membranes of cortical granules are substantially larger and display a significantly lower density. An anastomosing cortical endoplasmic reticulum forms close associations with both the plasma membrane of the egg and the membranes of cortical granules. Exocytosis begins with cortical granules pushing up beneath the plasma membrane to form domeshaped swellings, coupled with an apparent clearing of particles from the site of contact between the apposed membranes. A depression in the particle-free plasma membrane appears to mark sites of fusion and pore formation between cortical granules and plasma membranes. Profiles of exocytotic vesicles undergo a predictable sequence of morphological change, but maintain their identity in the egg surface during this transformation. Coated vesicles form at sites of cortical granule breakdown. Differences in particle density between cortical granules and egg plasma membranes persist during transformation of the exocytotic profiles. This suggests that constituents of the 2 membrane domains remain segregated and do not intermix rapidly, lending support to the view that the process of membrane retrieval is selective (i.e., cortical granule membrane is removed).  相似文献   

7.
The peripheral cytoplasm of the unfertilized sea urchin egg contains approximately 18,000 cortical granules. These granules remain monolayered within the normal boundaries of the cortex when the egg is centrifuged at forces sufficient to stratify other intracellular inclusions. Exposure of unfertilized eggs to the microfilament disrupting agent, cytochalasin B (CB) causes the granules to rearrange into several layers and occasionally to undergo exocytosis or break down in situ. When these eggs are centrifuged, the cortical granules are dislodged from the cortex and migrate centrifugally among the densest intracellular components. In addition, cytoplasmic inclusions, which normally are excluded from the cortex, impinge directly upon the egg plasma membrane in CB-treated, centrifuged eggs. These results are consistent with the existence of a microfilamentous network which confines the cortical granules within and excludes other intracellular inclusions from the cortex of the unfertilized egg.  相似文献   

8.
Actin and nonmuscle myosin heavy chain (myosin-II) have been identified and localized in the cortex of unfertilized zebrafish eggs using techniques of SDS-polyacrylamide gel electrophoresis, immunoblotting, and fluorescence microscopy. Whole egg mounts, egg fragments, cryosections, and cortical membrane patches probed with rhodamine phalloidin, fluorescent DNase-I, or anti-actin antibody showed the cortical cytoskeleton to contain two domains of actin: filamentous and nonfilamentous. Filamentous actin was restricted to microplicae and the cytoplasmic face of the plasma membrane where it was organized as an extensive meshwork of interconnecting filaments. The cortical cytoplasm deep to the plasma membrane contained cortical granules and sequestered actin in nonfilamentous form. The cytoplasmic surface (membrane?) of cortical granules displayed an enrichment of nonfilamentous actin. An antibody against human platelet myosin was used to detect myosin-II in whole mounts and egg fragments. Myosin-II colocalized with both filamentous and nonfilamentous actin domains of the cortical cytoskeleton. It was not determined if egg myosin was organized into filaments. Similar to nonfilamentous actin, myosin-II appeared to be concentrated over the surface of cortical granules where staining was in the form of patches and punctate foci. The identification of organized and interconnected domains of filamentous actin, nonfilamentous actin, and myosin-II provides insight into possible functions of these proteins before and after fertilization. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The lectin wheat germ agglutinin (WGA) inhibited the egg jelly-induced acrosome reaction (AR) of sperm of the sea urchin, Strongylocentrotus intermedius . Fluorescein-conjugated WGA applied to sperm bound to the acrosomal region, to the midpiece, and to the tip of the flagellum. These effects were not observed in the presence of N-acetly-D-glucosamine. When the egg jelly was replaced by artificial AR inducers such as A23187 or nigericin, the AR was not inhibited by WGA. Results obtained using a Ca2+ indicator fura-2, a pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF) and a membrane potential sensitive dye 3,3'-dipentyl 2,2'-dioxacarbocyanine [diO-C5(3)] showed that WGA suppresses the egg jelly-induced influx of Ca2+ and slightly suppresses the efflux of H+ caused by the egg jelly, whereas the depolarization of the plasma membrane by the egg jelly is remarkably amplified by the treatment with WGA. These results suggest that WGA affects the regulatory system of the ion fluxes associated with the AR. The target protein of WGA (WGA-binding protein) was a membrane glycoprotein of 260 kD under non-reducing condition.  相似文献   

10.
The cell surface complex (Detering et al., 1977, J. Cell Biol. 75, 899-914) of the sea urchin egg consists of two subcellular organelles: the plasma membrane, containing associated peripheral proteins and the vitelline layer, and the cortical vesicles. We have now developed a method of isolating the plasma membrane from this complex and have undertaken its biochemical characterization. Enzymatic assays of the cell surface complex revealed the presence of a plasma membrane marker enzyme, ouabain-sensitive Na+/K+ ATPase, as well as two cortical granule markers, proteoesterase and ovoperoxidase. After separation from the cortical vesicles and purification on a sucrose gradient, the purified plasma membranes are recovered as large sheets devoid of cortical vesicles. The purified plasma membranes are highly enriched in the Na+/K+ ATPase but contain only very low levels of the proteoesterase and ovoperoxidase. Ultrastructurally, the purified plasma membrane is characterized as large sheets containing a "fluffy" proteinaceous layer on the external surface, which probably represent peripheral proteins, including remnants of the vitelline layer. Extraction of these membranes with Kl removes these peripheral proteins and causes the membrane sheets to vesiculate. Polyacrylamide gel electrophoresis of the cell surface complex, plasma membranes, and Kl-extracted membranes indicates that the plasma membrane contains five to six major proteins species, as well as a large number of minor species, that are not extractable with Kl. The vitelline layer and other peripheral membrane components account for a large proportion of the membrane-associated protein and are represented by at least six to seven polypeptide components. The phospholipid composition of the Kl-extracted membranes is unique, being very rich in phosphatidylethanolamine and phosphatidylinositol. Cholesterol was found to be a major component of the plasma membrane. Before Kl extraction, the purified plasma membranes retain the same species-specific sperm binding property that is found in the intact egg. This observation indicates that the sperm receptor mechanisms remain functional in the isolated, cortical vesicle-free membrane preparation.  相似文献   

11.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

12.
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.  相似文献   

13.
Morphology of the cortical reaction in the eggs of Penaeus penicillatus was studied with the light microscopy,scanning electron microscopy and transmission electron microscopy. The cortical reaction is divided into four stages. These stages are unreacted stages, early stages, corona stages and dissipation stage. The cortical rods were released and formed a jelly coating around the surface of the egg. The jelly coating remained until the first cleavage had finished. In the end, the hatching membrane appeared around the egg. It is believed that these cortical reaction are responsible for the prevention of polyspermy by both a chemical and physical block and that also may establish a microenvironment inside a touch chorionic membrane for the developing embryo.  相似文献   

14.
长毛对虾卵子皮层反应的研究   总被引:4,自引:0,他引:4  
Morphology of the cortical reaction in the eggs of Penaeus penicillatus was studied with the light microscopy,scanning electron microscopy and transmission electron microscopy. The cortical reaction is divided into four stages. These stages are unreacted stages, early stages, corona stages and dissipation stage. The cortical rods were released and formed a jelly coating around the surface of the egg. The jelly coating remained until the first cleavage had finished. In the end, the hatching membrane appeared around the egg. It is believed that these cortical reaction are responsible for the prevention of polyspermy by both a chemical and physical block and that also may establish a microenvironment inside a touch chorionic membrane for the developing embryo.  相似文献   

15.
Whole mounts, cryosections, and isolated cortices of unfertilized sea urchin eggs were probed with fluorescent phalloidin, anti-actin and anti-egg spectrin antibodies to investigate the organizational state of the cortically associated actin-membrane cytoskeleton. Filamentous actin and egg spectrin were localized to the plasma membrane, within microvillar and nonmicrovillar domains. The nonmicrovillar filamentous actin was located immediately subjacent to the microvilli forming an extensive interconnecting network along the inner surface of the plasma membrane. The organization of this filamentous actin network precisely correlated with the positioning of the underlying cortical granules. The cortical cytoplasm did not contain any detectable filamentous actin, but instead contained a sequestered domain of nonfilamentous actin. Spectrin was localized to the cytoplasmic surface of the plasma membrane with concentrated foci co-localized with the filamentous actin present in microvilli. Spectrin was also observed to coat the surfaces of cortical granules as well as other populations of intracellular vesicles. On the basis of light microscopic morphology, intracellular distribution, and co-isolation with the egg cortex, some of these spectrin-coated organelles represent acidic vesicles. Identification of an elaborate organization of inter-related domains of actin (filamentous and nonfilamentous) and spectrin forming the cortical membrane cytoskeleton provides insight into the fundamental mechanisms for early membrane restructuring during embryogenesis. Additionally, the localization of spectrin to the surface of intracellular vesicles is indicative of its newly identified functional roles in membrane trafficking, membrane biogenesis and cellular differentiation.  相似文献   

16.
In unfertilized frog eggs, the plasma membrane displays an animal vegetal polarity characterized by the presence of short microvilli in the vegetal hemisphere and long microvilli or ridge-like protrusions in the animal hemisphere. The densities of microvilli are similar in the two hemispheres.
The fertilizing sperm always fuses with the animal hemisphere of the egg and induces a wave of exocytosis of cortical granules from its site of penetration. Similar spreading of the cortical reaction is seen on activation by pricking the egg cortex. The integration of the cortical granule membrane with the plasma membrane is rapidly followed by elongation of microvilli, which is progressively realized all over the egg surface from the site of sperm entry or the site of pricking. At this time, the length and shape of the microvilli in the animal and vegetal hemispheres are similar and their densities are the same as in unfertilized eggs.
A "smoothing" wave can be seen on the living egg, 40–60 seconds after pricking, starting around the site of pricking. This wave of microvillar elongation is accompanied by changes in intensity of diffracted light spots observed at the surface of the egg. This pattern might result from rapid and progressive thickening of the cortex that would drive pigment granules into the cytoplasm. The Brownian movement of these granules is thought to be responsible for the observed diffracted light spots.
Electrical stimulus or the ionophore A23187 induced activation reactions similar to those triggered by the sperm or by pricking, except that the cortical reaction began simultaneously in several distinct sites of the cortex.  相似文献   

17.
Distal urinary acidification is thought to be mediated by a proton ATPase (H+-ATPase). We isolated a plasma membrane fraction from human kidney cortex and medulla which contained H+-ATPase activity. In both the cortex and medulla the plasma membrane fraction was enriched in alkaline phosphatase, maltase, Na+,K+-ATPase and devoid of mitochondrial and lysosomal contamination. In the presence of oligomycin (to inhibit mitochondrial ATPase) in the presence of ouabain (to inhibit Na+,K+-ATPase) and in the absence of Ca (to inhibit Ca2+-ATPase) this plasma membrane fraction showed ATPase activity which was sensitive to dicyclohexylcarbodiimide and N-ethylmaleimide. This ATPase activity was also inhibited by vanadate, 4,4'-diisothiocyano-2,2'-disulfonic stilbene and ZnSO4. In the presence of ATP, but not GTP or UTP, the plasma membrane fraction of both cortex and medulla was capable of quenching of acridine orange fluorescence, which could be dissipated by nigericin indicating acidification of the interior of the vesicles. The acidification was not affected by presence of oligomycin or ouabain indicating that it was not due to mitochondrial ATPase or Na+,K+-ATPase, respectively. Dicyclohexylcarbodiimide and N-ethylmaleimide completely abolished the acidification by this plasma membrane fraction. In the presence of valinomycin and an outward-directed K gradient, there was increased quenching of acridine orange, indicating that the H+-ATPase is electrogenic. Acidification was not altered by replacement of Na by K, but was critically dependent on the presence of chloride. In summary, the plasma membrane fraction of the human kidney cortex and medulla contains a H+-ATPase, which is similar to the H+-ATPase described in other species, and we postulate that this H+-ATPase may be involved in urinary acidification.  相似文献   

18.
Electrical activation of the hamster egg was used to study cortical granule constituents before and after exocytosis. The activated hamster eggs underwent cortical granule decondensation just prior to and at the time of exocytosis. Some of the cortical granules of aged, unactivated eggs underwent similar changes. FITC- and gold-conjugated Lens culinaris agglutinin (LCA) bound intensely to the surfaces of activated but not unactivated eggs. This labelling was associated with the microvilli. Permeabilized eggs exhibited discrete cortical labelling before activation, with a subsequent decrease following the cortical reaction. Gold-conjugated LCA specifically bound to cortical granules when incubated with thin sections. FITC-soybean trypsin inhibitor (SBTI) bound in discrete foci in the cortex of unactivated eggs. Following activation, cortical labelling by SBTI decreased. Aprotinin and benzamidine hydrochloride inhibited FITC-SBTI from binding to the egg cortex. Gold-avidin localization of biotin-SBTI in the electron microscope demonstrated that condensed cortical granules did not bind SBTI but decondensed or exocytosing granules did. This suggests that a cortical granule protease is exposed just prior to exocytosis. Activated eggs exhibited dramatic decreases in the number of hamster sperm penetrating the cytoplasm, suggesting that a plasma membrane block to polyspermy is temporally related to cortical granule exocytosis.  相似文献   

19.
Eggs of Strongylocentrotus purpuratus (sea urchin) have a surface area of 41,000 μm2 before fertilization as determined by quantitative transmission and scanning electron microscopy. Within a minute after fertilization 18,000 cortical vesicles contribute an additional 57,000 μm2 to form a mosaic membrane with the original plasma membrane. However, by 16 min after fertilization the total area of the egg is only 45,000 μm2, indicating a rapid resorption of surface. Calculations of surface area depend in large part upon the numbers and dimensions of microvilli, after careful compensations are made for specimen shrinkage. The 134,000 microvilli per egg are 0.35 μm long before fertilization. They elongate to 1.0 μm in the first few minutes and then soon shorten to 0.5 μm. Even at their longest, microvilli do not accommodate all of the surface area of cortical vesicle membrane. The merger of cortical vesicle membranes and the plasma membrane was demonstrated many years ago and is not in doubt; however, this study indicates that the resulting mosaic membrane is not a long-lived, simple arithmetic combination of its components. Rather, the mosaic membrane undergoes a rapid and dynamic shrinkage by a mechanism which is not apparent on the basis of egg topography alone. The absolute values of egg surface area and dynamic changes in the surface are discussed in relation to physiological events accompanying fertilization.  相似文献   

20.
Scanning microscopy and transmission electron microscopy of sectioned specimens and freeze-fracture replicas revealed the presence of slightly elevated regions, approximately one-fourth to one-half the diameter of microvilli, which were situated along the surface of unfertilized Arbacia eggs. These modifications of the surface of the egg were observed in areas occupied by cortical granules and were greatly reduced in number following the cortical granule reaction. Few such modifications were present in immature and urethane-treated ova, in which cortical granules were located in regions of the egg other than the cortex. Freeze-fracture replicas of unfertilized eggs revealed a significantly higher density of intramembranous particles within the plasmalemma when compared to replicas of the membrane surrounding cortical granules. Areas characteristic of the cortical granule membrane, i.e., sparsely laden with particles, were not observed within the plasmalemma of the fertilized egg. Hence, following its fusion with the egg plasma membrane there is a dramatic reorganization in particle distribution of the membrane derived from cortical granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号