首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The kinetics of 1,3-bisphosphoglycerate binding to glyceraldehyde-3-phosphate dehydrogenase have been examined by stopped-flow techniques in the absence and presence of phosphoglycerate kinase, using enzyme concentrations in the range 0.5-40 microM. Rate and equilibrium constant estimates for the interaction of the ligand with the two enzymes are reported. 2. The kinetics of ligand transfer from the binary complex of bisphosphoglycerate and phosphoglycerate kinase to the binary complex of NAD+ and glyceraldehyde-3-phosphate dehydrogenase conform excellently to the predictions of a standard free-diffusion mechanism and exhibit no detectable contributions from a mechanism of direct (channelized) transfer of bisphosphoglycerate between the two enzymes. 3. Previously reported evidence that the binary complex of bisphosphoglycerate and phosphoglycerate kinase may act (in the presence of NADH) as a substrate for glyceraldehyde-3-phosphate dehydrogenase according to Michaelis-Menten kinetics is based on a misinterpretation of the experimental observations that can be attributed to neglect of the autocatalytic effect of NAD+ produced during the reaction. Experiments performed under conditions where the autocatalytic effect of NAD+ is eliminated provide clear evidence that the kinetics of utilization of the kinase-bisphosphoglycerate complex for enzymic NADH reduction are consistent with prior dissociation of the complex according to a free-diffusion mechanism of metabolite transfer and incompatible with a mechanism of direct metabolite transfer. 4. A kinetic argument is presented which renders implausible the very idea that direct metabolite transfer between 'soluble' consecutive enzymes in metabolic pathways may offer any catalytic advantages in comparison to metabolite transfer by free diffusion. A mechanism of direct metabolite transfer seems intuitively attractive only because one tends to disregard the diffusional processes required to bring the consecutive enzymes together and to separate them when the transfer has been completed. Direct metabolite transfer would be expected to be catalytically advantageous only in tightly bound multienzyme complexes showing no kinetically significant tendency to dissociate. 5. It is concluded that mechanisms of direct metabolite transfer have not been convincingly demonstrated to apply, nor are they likely to apply, between 'soluble' consecutive enzymes in metabolic pathways, at least not in the glycolytic sequence of reactions.  相似文献   

2.
Rat bone marrow cells have been fractionated by density gradient in Percoll. Differential counting of erythroid cells, haemoglobin concentration and bisphosphoglycerate mutase and phosphoglycerate kinase activities have been determined in cellular fractions. As shown by means of a statistical approach, an increase in bisphosphoglycerate mutase activity and a slight decrease in phosphoglycerate kinase activity is found in erythroid cells as their haemoglobin content increases. Our results suggest that there is a synthesis of 2,3-bisphosphoglycerate during the erythropoietic process which parallels the synthesis of haemoglobin.  相似文献   

3.
Kinetic analyses indicate that human erythrocyte phosphoglycerate mutase catalyzes the normal, reversible isomerization of D-glycerate-3-P and D-glycerate-2-P in the absence of added D-glycerate-2,3-P2. The reaction is impeded, however, by a potent inhibitor which occurs as a natural component of commericial D-glycerate-3-P. Inhibition may be overcome through substrate purification or by adding D-glycerate-2,3-P2 to the reaction medium containing the contaminant. In surmounting the inhibition, bisphosphoglycerate performs as a non-essential activator and not as a cofactor. The latter concept is corroborated by the observation that D-glycerate-2,3-P2 has absolutely no influence on mutase catalysis conducted in the presence of pure substrate. The data presented here and elsewhere, however, suggest that the red cell enzyme is readily phosphorylated by mono- as well as bisphosphoglycerate. Additional findings show that at concentrations in excess of 3mM, D-glycerate-3-P accelerates phosphoglycerate mutase catalysis in the absence of cofactor, suggesting that the mutase molecule possesses a normal catalytic site and an allosteric activator site.  相似文献   

4.
Crystal structure of human bisphosphoglycerate mutase   总被引:3,自引:0,他引:3  
Bisphosphoglycerate mutase is a trifunctional enzyme of which the main function is to synthesize 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. The gene coding for bisphosphoglycerate mutase from the human cDNA library was cloned and expressed in Escherichia coli. The protein crystals were obtained and diffract to 2.5 A and produced the first crystal structure of bisphosphoglycerate mutase. The model was refined to a crystallographic R-factor of 0.200 and R(free) of 0.266 with excellent stereochemistry. The enzyme remains a dimer in the crystal. The overall structure of the enzyme resembles that of the cofactor-dependent phosphoglycerate mutase except the regions of 13-21, 98-117, 127-151, and the C-terminal tail. The conformational changes in the backbone and the side chains of some residues reveal the structural basis for the different activities between phosphoglycerate mutase and bisphosphoglycerate mutase. The bisphosphoglycerate mutase-specific residue Gly-14 may cause the most important conformational changes, which makes the side chain of Glu-13 orient toward the active site. The positions of Glu-13 and Phe-22 prevent 2,3-bisphosphoglycerate from binding in the way proposed previously. In addition, the side chain of Glu-13 would affect the Glu-89 protonation ability responsible for the low mutase activity. Other structural variations, which could be connected with functional differences, are also discussed.  相似文献   

5.
Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined.  相似文献   

6.
Type M phosphoglycerate mutase and skeletal muscle bisphosphoglycerate synthase-phosphatase from pig are similarly affected by Hg2+. Both enzymes lose the phosphoglycerate mutase and the glycerate-2,3-P2 synthase activities, and increase the glycerate-2,3-P2 phosphatase activity upon Hg2+-treatment. In contrast, bisphosphoglycerate phosphatase from pig skeletal muscle is inactivated by Hg2+. These results confirm the similarity between phosphoglycerate mutase and bisphosphoglycerate synthase-phosphatase. In addition they support the existence of separate binding sites for monophosphoglycerates and for bisphosphoglycerates at the phosphoglycerate mutase active site.  相似文献   

7.
Phosphoglycerate mutase and bisphosphoglycerate synthase (mutase) can both be phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form phosphohistidine enzymes. The present study uses a rapid quench procedure to determine if, for each enzyme, the formation of the phosphorylated enzyme and phosphate transfer from the enzyme can occur at rates consistent with the overall reactions. With bisphosphoglycerate synthase from horse red blood cells (glycerate-1,3-P2 leads to glycerate-2,3-P2) at pH 7.5, 25 degrees, phosphorylation of the enzyme appears rate-limiting, k = 13.5 s-1, compared with kcat = 12.5 s-1 for the overall synthase rate. Phosphoryl transfer from the enzyme to phosphoglycerate occurs at 38 s-1 at 4 degrees and was too fast to measure at 25 degrees. With chicken muscle phosphoglycerate mutase the half-times were too short to measure under optimal conditions. The rate of enzyme phosphorylation by glycerate-2,3-P2 at pH 5.5, 4 degrees, could account for the overall reaction rate of 170 s-1. The rate of phosphoryl transfer from the enzyme to glycerate-3-P was too rapid to measure under the same conditions. It is concluded that the phosphorylated enzymes have kinetic properties consistent with their participation as intermediates in the reactions catalyzed by these enzymes.  相似文献   

8.
The levels of the enzymes involved in the metabolism of glycerate-2,3-P2 (phosphoglycerate mutase, bisphosphoglycerate synthase-phosphatase and bisphosphoglycerate phosphatase) in cat and in pig tissues are different. The main difference is the low level of bisphosphoglycerate synthase-phosphatase in cat tissues. As a consequence, in contrast with pig erythrocytes, in cat erythrocytes, both the synthesis and the breakdown of glycerate-2,3-P2 are mainly controlled by phosphoglycerate mutase.  相似文献   

9.
Phosphoglycerate kinase (MgATP 3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) has been isolated from rat liver with a purification ratio of 960 and a specific activity of 300 IU/mg of protein. The purity of the enzyme preparations was estimated by polyacrylamide gel electrophoresis. The molecular weight, determined by gel filtration is 42 000. The "subunit" size of phosphoglycerate kinase as determined by sodium dodecyl sulfate gel electrophoresis is 46 000, indicating that the enzyme is monomeric. The rate of the enzyme reaction as a function of the concentration of D-3-phosphoglycerate indicated the usual Michaelis Menten relationship. The rate of the enzyme reaction as a function of the concentration of MgATP2- did not fit the usual Michaelis Menten relationship: two distinct regions can be fitted with different straight lines and suggest the presence of two sites for the Mg ATP2-. This hypothesis seems to be confirmed by the study of the action of the free and complexed nucleotides.  相似文献   

10.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

11.
Bisphosphoglycerate synthase (glycerate-1,3-P2 yields glycerate-2,3-P2) and phosphoglycerate mutase (glycerate-3-P formed from glycerate-2-P) are both phosphorylated by substrates at a histidine residue forming covalent intermediates which have been shown to function in the phosphoryl transfer reactions catalyzed by these enzymes (Rose, Z. B., and Dube, S. (1976) J. Biol. Chem. 251, 4817--4822). We have phosphorylated bisphosphoglycerate synthase from horse red blood cells with [U-32P]glycerate-2,3-P2, digested with trypsin, and purified the phosphopeptide. The amino acid sequence of the phosphohistidine peptide has been determined to be: His-Gly-Gln-Gly-Ala-Trp-Asn-Lys. In like manner, a phosphohistidyl peptide has now been purified from yeast phosphoglycerate mutase, for which the amino acid sequence is known (Winn, S. I., Watson, H. C., Fothergill, L. A., and Harkins, R. N. (1977) Biochem. Soc. Trans. 5, 657-659). The amino acid composition of the phosphopeptide indicates that histidine-8 was phosphorylated. The sequence of this peptide is closely homologous with the active site peptide from bisphosphoglycerate synthase. In yeast phosphoglycerate mutase, the denatured phosphoenzyme hydrolyzes with a single rate constant of 2.02 X 10(-4) s-1 at pH 3, 45 degrees C. The relevance of these observations to the enzymatic mechanism is discussed.  相似文献   

12.
Bisphosphoglycerate synthase from horse red cells has been purified to apparent homogeneity by a simple and efficient new procedure incorporating chromatography on a column of Sepharose 4B derivatized with blue dextran. The enzyme is similar to the human red cell synthase in subunit size. It is phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form a phosphoenzyme with the acid-lability of a histidyl phosphate. In addition to the synthase activity (glycerate-1,3-P2 → glycerate-2,3-P2), kcat 12.5 s?1, the enzyme has bisphosphoglycerate phosphatase activity in the presence of glycolate-2-P (glycerate-2,3-P2 → glycerate-P + Pi), kcat 2.6 s?1 and phosphoglycerate mutase activity (3-PGA ? 2-PGA), kcat 1.7 s?1. The energy of activation for the synthase reaction is 9.38 kcal/mol. Lineweaver-Burk plots of the kinetic data are parallel lines. In contrast intersecting patterns were obtained from similar experiments done with the human red cell enzyme. Further investigation is required to explain these differences. This enzyme may function as both synthase and phosphatase for bisphosphoglycerate in the red blood cell.  相似文献   

13.
K M Brindle 《Biochemistry》1988,27(16):6187-6196
31P NMR magnetization-transfer measurements were used to measure flux between inorganic phosphate and ATP in the reactions catalyzed by phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase in anaerobic cells of the yeast Saccharomyces cerevisiae. Flux between ATP and Pi and glucose consumption and ethanol production were measured in cells expressing different levels of phosphoglycerate kinase activity. Overexpression of the enzyme was obtained by transforming the cells with a multicopy plasmid containing the phosphoglycerate kinase coding sequence and portions of the promoter element. Fluxes were also measured in cells in which the glyceraldehyde-3-phosphate dehydrogenase activity had been lowered by limited incubation with iodoacetate. These measurements showed that both enzymes have low flux control coefficients for glycolysis but that phosphoglycerate kinase has a relatively high flux control coefficient for the ATP----Pi exchange catalyzed by the two enzymes. The Pi----ATP exchange velocities observed in the cell were shown to be similar to those displayed by the isolated enzymes in vitro under conditions designed to mimic those in the cell with respect to the enzyme substrate concentrations.  相似文献   

14.
1. The testis-specific isoenzyme of phosphoglycerate kinase (phosphoglycerate kinase B) has been isolated from ram testes using a procedure which separates it from 'normal' phosphoglycerate kinase which is also present in testis tissue. The purification procedure is described. 2. The best preparations had no detectable impurity on electrophoresis, and had specific activities comparable with the same enzyme from other sources. 3. Kinetic studies indicated that the two isoenzymes have identical properties, within experimental error, for substrate affinity (for MgATP, 3-phosphoglycerate and MgADP), energy of activation and thermal denaturation. 4. The molecular weights of both isoenzymes were not distinguishably different from those previously reported, as measured by polyacrylamide/dodecylsulphate electrophoresis. The amino acid compositions showed only slight differences, and tryptic peptide maps showed that there was close homology of sequence. Starch gel electrophoresis at pH 6.5 indicates that the B isoenzyme has 1--2 more positive charges than the A. 5. Phosphoglycerate kinase A isolated from sheep muscle was shown, within experimental error, to be identical to the phosphoglycerate kinase A isolated from testis. 6. The results further substantiate the suggestion that the B isoenzyme is coded by a gene which was duplicated from the phosphoglycerate kinase A gene.  相似文献   

15.
Summary We have determined the nucleotide sequence of both genomic and complementary DNA (cDNA) for the gene encoding the glycolytic enzyme phosphoglycerate kinase from the ciliated protozoan Tetrahymena thermophila. The amino acid sequence for the enzyme has also been derived from the cDNA sequence. The gene contains an open reading frame of 1260 nucleotides encoding 420 amino acids. Coding sequence in genomic DNA is interrupted by two introns at positions corresponding to introns 3 and 4 in mammalian phosphoglycerate kinase genes. The derived amino acid sequence was used to prepare a phylogeny by aligning the Tetrahymena sequence with 25 other phosphoglycerate kinase amino acid sequences. The Tetrahymena sequence is a typical eukaryotic sequence. There is recognizable and clear homology across species that cover nearly the complete range of life forms. The phylogenetic reconstruction of these sequences generally supports the conclusions that have been reached using rRNA sequences.Offprint requests to: R.E. Pearlman  相似文献   

16.
Measurements of the relaxation rate of water protons (PRR) have been used to study the interaction of yeast phosphoglycerate kinase with the manganous complexes of a number of nucleotides. The results indicate that phosphoglycerate kinase belongs to the same class of enzymes as creatine kinase, adenylate kinase, formyltetrahydrofolate synthetase, and arginine kinase, with maximal binding of metal ion to tne enzyme in the presence of the nucleotide substrate. However, an analysis of titration curves for a number of nucleoside diphosphates (ADP, IDP, GDP) showed that there is a substantial synergism in binding of the metal ion and nucleotide to the enzyme in the ternary complex. The metal-substrate binds to the enzyme approximately two orders of magnitude more tightly than the free nucleotide; Other evidence for an atypical binding scheme for Mn(II)-nucleoside diphosphates was obtained by electron paramagnetic resonance (EPR) studies; the EPR spectrum for the bound Mn(II) in the enzyme-MnADP complex differed substantially from those obtained for other kinases. An identical EPR spectrum is observed with the MnADP complex with the rabbit muscle enzyme as with the yeast enzyme. In contrast, the dissociation constant for the enzyme-MnATP complex is approximately fourfold lower than that for enzyme-ATP, and there are no substantial changes in the electron paramagnetic resonance spectrum of MnATP2- when the complex is bound to phosphoglycerate kinase. A small but significant change in the PRR of water is observed on addition of 3-phosphoglycerate (but not 2-phosphoglycerate) to the MnADP-enzyme complex. However, addition of 3-phosphoglycerate to enzyme-MnADP did not influence the EPR spectrum of the enzyme-bound Mn(II).  相似文献   

17.
Reversible thermal denaturation of phosphoglycerate kinases (E.C. 2.7.2.3) from an extremely thermophilic bacterium Thermus thermophilus and from yeast were studied by measuring their circular dichroism and fluorescence intensity. The thermal denaturation in the presence of guanidine hydrochloride was completely reversible. The thermodynamic parameters for the reaction were calculated based on a two-state mechanism. The free energy changes in denaturation at 25 °C in the absence of denaturant were estimated to be 11.87 ± 0.21 kcal/mol for T. thermophilus phosphoglycerate kinase and 5.33 ± 0.13 kcal/mol for that of yeast. It was found that the van't Hoff plot of the equilibrium constant for the denaturation reaction was almost independent of temperature in the temperature range 0 to 60 °C for T. thermophilus phosphoglycerate kinase, while that of yeast phosphoglycerate kinase was strongly temperature-dependent as reported for other thermolabile proteins. The enthalpy change in denaturation varies from 0.03 to 6.2 kcal/mol (0 to 60 °C) for T. thermophilus phosphoglycerate kinase and from ?27 to 31 kcal/mol (10 to 35 °C) for yeast enzyme. The entropy change in denaturation varies from ?3.9 to 21 entropy units for T. thermophilus phosphoglycerate kinase and ?96 to 104 entropys unit (10 to 35 °C) for yeast enzyme. The heat capacity change in denaturation is between 1.4 and 63 cal/deg. mol for the thermophile enzyme and between 1530 and 1750 cal/deg. mol for yeast enzyme at 20 °C. The observations that the enthalpy changes as well as the heat capacity changes in denaturation of the thermophilic enzyme were negligibly small suggest an explanation for the unusual stability to heat of T. thermophilus phosphoglycerate kinase.We also propose three possible mechanisms for the thermostability of proteins in general.  相似文献   

18.
(1) A glycolytic enzyme, phosphoglycerate kinase [EC 2.7.2.3], was purified from cells of an extreme thermophile, Thermus thermophilus strain HB8. The enzyme was resistant to heat, and no loss of activity was observed after incubation for 10--20 min at 79 degrees C. (2) Catalytic properties such as pH optimum (pH 6--8.5), kinetic parameters (Km=0.28 mM for ATP, 1.79 mM for glycerate 3-phosphate), substrate specificity and inhibitors of the enzyme were investigated and compared with those of phosphoglycerate kinase from other sources. (3) The enzyme protein consists of a single polypeptide chain of molecular weight 44,600. The isoelectric point is 5.0 The amino acid composition of the enzyme was studied. The contents of ordered secondary structures were estimated to be 29% alpha-helix and 11% pleated sheet from the circular dichroic spectrum of the enzyme protein. (4) The fluorescence spectrum of the enzyme protein showed an emission maximum at 320 nm when excited at 280 nm. The quantum yield was 0.19. Tryptophyl fluorescence was not quenched, in contrast to the fluorescence reported for yeast phosphoglycerate kinase.  相似文献   

19.
We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts (J Macioszek, LE Anderson [1987] Biochim Biophys Acta 892: 185-190). Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.  相似文献   

20.
Homogeneous phosphoglycerate kinase from bovine liver possesses a maximum ultraviolet absorption at 278 nm (A 1%,1Cm 280 equals 6.7; Amax/Amin equals 2.26; e280 equals 31.5 mM(-1) X cm(-1). The enzyme consists of about 420 amino-acid residues and is a slightly acidic protein with an isoelectric point of 6.5 as expected from amino-acid analysis. The most notable features of the chemical composition are two tryptophan, 12 methionine and four half-cystine residues per enzyme molecule. Although phosphoglycerate kinases from mammalian tissues are partially similar to each other, clear differences in serine, glutamic acid, glycine, cysteine, valine, leucine, tyrosine, tryptophan and arginine contents were found. Fingerprinting and column chromatography of tryptic digests of the S-carboxymethylated protein confirm the data of amino-acid analysis. Liver phosphoglycerate kinase is inactivated when modified with either p-chloromercuribenzoate or 5,5'dithio-bis(2-nitrobenzoic acid) (Nbs2). The enzyme has two thiol groups available for reaction with Nbs2 under denaturing conditions, one of which is essential for catalysis. After reduction by NaBH4 four cysteine residues per molecule were determined with Nbs2, sugessting the presence of a disulfide bridge. Using sedimentation equilibrium studies, the molecular weight was found to be 49600. Gel filtration yielded values of 43000-50000. By analytical dodecylsulfate-polyacrylamide gel electrophoresis a molecular weight of 45600 was estimated. Inconsistent with these results in the value 37500 obtained by thin-layer gel chromatography in 6 M guanidine-HCl. Sedimentation velocity experiments revealed a sedimentation coefficient s20,w equals 3.4 S. The Stokes radius was 2.77 nm, the partial specific volume v 0.747 ml x g(-1). The diffusion coefficient was found to be 76.9 mum2 x s(-1) by analytical gel filtration. From these data a molecular weight of 44000 was calculated. Other physical constants of bovine-liver phosphoglycerate kinase are: frictional ratio f/f0 equals 1.18, axial ratio equals 3.3, maximal degree of hydration equals 0.1 g per g of protein. Bovine-layer phosphoglycerate kinase could not be dissociated into smaller subunits by treatments which have caused dissociation of various other proteins (8 M urea, 6 M guanidine-HCl, dodecyl sulfate, carboxymethylation, maleylation). All experiments strongly support the lack of subunit structure of the enzyme. Some characteristics of bovine-liver phosphoglycerate kinase are compared with the corresponding proteins from rabbit muscle, yeast and human erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号