首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yengo CM  Sweeney HL 《Biochemistry》2004,43(9):2605-2612
Myosin V is molecular motor that is capable of moving processively along actin filaments. The kinetics of monomeric myosin V containing a single IQ domain (MV 1IQ) differ from nonprocessive myosin II in that actin affinity is higher, phosphate release is extremely rapid, and ADP release is rate-limiting. We generated two mutants of myosin V by altering loop 2, a surface loop in the actin-binding region thought to alter actin affinity and phosphate release in myosin II, to determine the role that this loop plays in the kinetic tuning of myosin V. The loop 2 mutants altered the apparent affinity for actin (K(ATPase)) without altering the maximum ATPase rate (V(MAX)). Transient kinetic analysis determined that the rate of binding to actin, as well as the affinity for actin, was dependent on the net positive charge of loop 2, while other steps in the ATPase cycle were unchanged. The maximum rate of phosphate release was unchanged, but the affinity for actin in the M.ADP.Pi-state was dramatically altered by the mutations in loop 2. Thus, loop 2 is important for allowing myosin V to bind to actin with a relatively high affinity in the weak binding states but does not play a direct role in the product release steps. The ability to maintain a high affinity for actin in the weak binding states may prevent diffusion away from the actin filament and increase the degree of processive motion of myosin V.  相似文献   

2.
Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region.  相似文献   

3.
An expressed, monomeric murine myosin V construct composed of the motor domain and two calmodulin-binding IQ motifs (MD(2IQ)) was used to assess the regulatory and kinetic properties of this unconventional myosin. In EGTA, the actin-activated ATPase activity of MD(2IQ) was 7.4 +/- 1.6 s(-1) with a K(app) of approximately 1 microM (37 degrees C), and the velocity of actin movement was approximately 0.3 micrometer/s (30 degrees C). Calcium inhibited both of these activities, but the addition of calmodulin restored the values to approximately 70% of control, indicating that calmodulin dissociation caused inhibition. In contrast to myosin II, MD(2IQ) is highly associated with actin at physiological ionic strength in the presence of ATP, but the motor is in a weakly bound conformation based on the pyrene-actin signal. The rate of dissociation of acto-MD(2IQ) by ATP is fast (>850 s(-1)), and ATP hydrolysis occurs at approximately 200 s(-1). The affinity of acto-MD(2IQ) for ADP is somewhat higher than that of smooth S1, and ADP dissociates more slowly. Actin does not cause a large increase in the rate of ADP release, nor does the presence of ADP appreciably alter the affinity of MD(2IQ) for actin. These kinetic data suggest that monomeric myosin V is not processive.  相似文献   

4.
Myosins are molecular motor proteins that harness the chemical energy stored in ATP to produce directed force along actin filaments. Complex communication pathways link the catalytic nucleotide-binding region, the structures responsible for force amplification and the actin-binding domain of myosin. We have crystallized the nucleotide-free motor domain of myosin II in a new conformation in which switch I and switch II, conserved loop structures involved in nucleotide binding, have moved away from the nucleotide-binding pocket. These movements are linked to rearrangements of the actin-binding region, which illuminate a previously unobserved communication pathway between the nucleotide-binding pocket and the actin-binding region, explain the reciprocal relationship between actin and nucleotide affinity and suggest a new mechanism for product release in myosin family motors.  相似文献   

5.
Kovács M  Tóth J  Nyitray L  Sellers JR 《Biochemistry》2004,43(14):4219-4226
The enzymatic and motor function of smooth muscle and nonmuscle myosin II is activated by phosphorylation of the regulatory light chains located in the head portion of myosin. Dimerization of the heads, which is brought about by the coiled-coil tail region, is essential for regulation since single-headed fragments are active regardless of the state of phosphorylation. Utilizing the fluorescence signal on binding of myosin to pyrene-labeled actin filaments, we investigated the interplay of actin and nucleotide binding to thiophosphorylated and unphosphorylated recombinant nonmuscle IIA heavy meromyosin constructs. We show that both heads of either thiophosphorylated or unphosphorylated heavy meromyosin bind very strongly to actin (K(d) < 10 nM) in the presence or absence of ADP. The heads have high and indistinguishable affinities for ADP (K(d) around 1 microM) when bound to actin. These findings are in line with the previously observed unusually loose coupling between nucleotide and actin binding to nonmuscle myosin IIA subfragment-1 (Kovács et al. (2003) J. Biol. Chem. 278, 38132.). Furthermore, they imply that the structure of the two heads in the ternary actomyosin-ADP complex is symmetrical and that the asymmetrical structure observed in the presence of ATP and the absence of actin in previous investigations (Wendt et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 4361) is likely to represent an ATPase intermediate that precedes the actomyosin-ADP state.  相似文献   

6.
The upper 50-kDa region of myosin may be critical for coupling between the nucleotide- and actin-binding regions. We introduced a tetracysteine motif in the upper 50-kDa domain (residues 292-297) of myosin V containing a single IQ domain (MV 1IQ), allowing us to label this site with the fluorescein biarscenical hairpin-binding dye (FlAsH) (MV 1IQ FlAsH). The enzymatic properties of MV 1IQ FlAsH were similar to those of unlabeled MV 1IQ except for a 3-fold reduced ADP-release rate. MV 1IQ FlAsH was also capable of moving actin filaments in the in vitro motility assay. To examine rotation of the upper 50-kDa region, we determined the difference in the degree of energy transfer from N-methylanthraniloyl (mant)-labeled nucleotides to FlAsH in both steady-state and transient kinetic experiments. The energy transfer efficiency was higher with mant-ATP (0.65 +/- 0.02) compared with mant-ADP (0.55 +/- 0.02) in the absence of actin. Stopped-flow measurements suggested that the energy transfer efficiency decreased with phosphate release (0.04 s(-1)) in the absence of actin. In contrast, upon mixing MV 1IQ FlAsH in the ADP.P(i) state with actin, a decrease in the energy transfer signal was observed at a rate of 13 s(-1), similar to the ADP release rate. Our results demonstrate there was no change in the energy transfer signal upon actin-activated phosphate release and suggest that actin binding alters the dynamics of the upper 50-kDa region, which may be critical for the ability of myosin to bind tightly to both ADP and actin.  相似文献   

7.
The nucleotide state of actin (ATP, ADP-Pi, or ADP) is known to impact its interactions with other actin molecules upon polymerization as well as with multiple actin binding proteins both in the monomeric and filamentous states of actin. Recently, molecular dynamics simulations predicted that a sequence located at the interface of subdomains 1 and 3 (W-loop; residues 165–172) changes from an unstructured loop to a β-turn conformation upon ATP hydrolysis (Zheng, X., Diraviyam, K., and Sept, D. (2007) Biophys. J. 93, 1277–1283). This region participates directly in the binding to other subunits in F-actin as well as to cofilin, profilin, and WH2 domain proteins and, therefore, could contribute to the nucleotide sensitivity of these interactions. The present study demonstrates a reciprocal communication between the W-loop region and the nucleotide binding cleft on actin. Point mutagenesis of residues 167, 169, and 170 and their site-specific labeling significantly affect the nucleotide release from the cleft region, whereas the ATP/ADP switch alters the fluorescence of probes located in the W-loop. In the ADP-Pi state, the W-loop adopts a conformation similar to that in the ATP state but different from the ADP state. Binding of latrunculin A to the nucleotide cleft favors the ATP-like conformation of the W-loop, whereas ADP-ribosylation of Arg-177 forces the W-loop into a conformation distinct from those in the ADP and ATP-states. Overall, our experimental data suggest that the W-loop of actin is a nucleotide sensor, which may contribute to the nucleotide state-dependent changes in F-actin and nucleotide state-modulated interactions of both G- and F-actin with actin-binding proteins.  相似文献   

8.
Myosin VIIA was cloned from rat kidney, and the construct (M7IQ5) containing the motor domain, IQ domain, and the coiled-coil domain as well as the full-length myosin VIIA (M7full) was expressed. The M7IQ5 contained five calmodulins. Based upon native gel electrophoresis and gel filtration, it was found that M7IQ5 was single-headed, whereas M7full was two-headed, suggesting that the tail domain contributes to form the two-headed structure. M7IQ5 had Mg(2+)-ATPase activity that was markedly activated by actin with K(actin) of 33 microm and V(max) of 0.53 s(-1) head(-1). Myosin VIIA required an extremely high ATP concentration for ATPase activity, ATP-induced dissociation from actin, and in vitro actin-translocating activity. ADP markedly inhibited the actin-activated ATPase activity. ADP also significantly inhibited the ATP-induced dissociation of myosin VIIA from actin. Consistently, ADP decreased K(actin) of the actin-activated ATPase. ADP decreased the actin gliding velocity, although ADP did not stop the actin gliding even at high concentration. These results suggest that myosin VIIA has slow ATP binding or low affinity for ATP and relatively high affinity for ADP. The directionality of myosin VIIA was determined by using the polarity-marked dual fluorescence-labeled actin filaments. It was found that myosin VIIA is a plus-directed motor.  相似文献   

9.
The motor protein myosin uses energy derived from ATP hydrolysis to produce force and motion. Important conserved components (P-loop, switch I, and switch II) help propagate small conformational changes at the active site into large scale conformational changes in distal regions of the protein. Structural and biochemical studies have indicated that switch I may be directly responsible for the reciprocal opening and closing of the actin and nucleotide-binding pockets during the ATPase cycle, thereby aiding in the coordination of these important substrate-binding sites. Smooth muscle myosin has displayed the ability to simultaneously bind tightly to both actin and ADP, although it is unclear how both substrate-binding clefts could be closed if they are rigidly coupled to switch I. Here we use single tryptophan mutants of smooth muscle myosin to determine how conformational changes in switch I are correlated with structural changes in the nucleotide and actin-binding clefts in the presence of actin and ADP. Our results suggest that a closed switch I conformation in the strongly bound actomyosin-ADP complex is responsible for maintaining tight nucleotide binding despite an open nucleotide-binding pocket. This unique state is likely to be crucial for prolonged tension maintenance in smooth muscle.  相似文献   

10.
Loop 1, a flexible surface loop in the myosin motor domain, comprises in part the transducer region that lies near the nucleotide-binding site and is proposed from structural studies to be responsible for the kinetic tuning of product release following ATP hydrolysis (1). Biochemical studies have shown that loop 1 affects the affinity of actin-myosin-II for ADP, motility and the V(max) of the actin-activated Mg2+-ATPase activity, possibly through P(i) release (2-8). To test the influence of loop 1 on the mammalian class I myosin, Myo1b, chimeric molecules in which (i) loop 1 of a truncated form of Myo1b, Myo1b1IQ, was replaced with either loop 1 from other myosins; (ii) loop 1 was replaced with glycine; or (iii) some amino acids in the loop were substituted with alanine and were expressed in baculovirus, and their interactions with actin and nucleotide were evaluated. The steady-state actin-activated ATPase activity; rate of ATP-induced dissociation of actin from Myo1b1IQ; rate of ADP release from actin-Myo1b1IQ; and the affinity of actin for Myo1b1IQ and Myo1b1IQ.ADP differed in the chimeras versus wild type, indicating that loop 1 has a much wider range of effects on the coupling between actin and nucleotide binding events than previously thought. In particular, the biphasic ATP-induced dissociation of actin from actin-Myo1b1IQ was significantly altered in the chimeras. This provided evidence that loop 1 contributes to the accessibility of the nucleotide pocket and is involved in the integration of information from the actin-, nucleotide-, gamma-P(i)-, and calmodulin-binding sites and predicts that loop 1 modulates the load dependence of the motor.  相似文献   

11.
Lin T  Greenberg MJ  Moore JR  Ostap EM 《Biochemistry》2011,50(11):1831-1838
myo1c is a member of the myosin superfamily that has been proposed to function as the adaptation motor in vestibular and auditory hair cells. A recent study identified a myo1c point mutation (R156W) in a person with bilateral sensorineural hearing loss. This mutated residue is located at the start of the highly conserved switch 1 region, which is a crucial element for the binding of nucleotide. We characterized the key steps on the ATPase pathway at 37 °C using recombinant wild-type (myo1c(3IQ)) and mutant myo1c (R156W-myo1c(3IQ)) constructs that consist of the motor domain and three IQ motifs. The R156W mutation only moderately affects the rates of ATP binding, ATP-induced actomyosin dissociation, and ADP release. The actin-activated ATPase rate of the mutant is inhibited >4-fold, which is likely due to a decrease in the rate of phosphate release. The rate of actin gliding, as measured by the in vitro motility assay, is unaffected by the mutation at high myosin surface densities, but the rate of actin gliding is substantially reduced at low surface densities of R156W-myo1c(3IQ). We used a frictional loading assay to measure the affect of resisting forces on the rate of actin gliding and found that R156W-myo1c(3IQ) is less force-sensitive than myo1c(3IQ). Taken together, these results indicate that myo1c with the R156W mutation has a lower duty ratio than the wild-type protein and motile properties that are less sensitive to resisting forces.  相似文献   

12.
The processive motor myosin V has a relatively high affinity for actin in the presence of ATP and, thus, offers the unique opportunity to visualize some of the weaker, hitherto inaccessible, actin bound states of the ATPase cycle. Here, electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional (3D) reconstructions provide the atomic models of myosin V in both weak and strong actin bound states. One structure shows that ATP binding opens the long cleft dividing the actin binding region of the motor domain, thus destroying the strong binding actomyosin interface while rearranging loop 2 as a tether. Nucleotide analogs showed a second new state in which the lever arm points upward, in a prepower-stroke configuration (lever arm up) bound to actin before phosphate release. Our findings reveal how the structural elements of myosin V work together to allow myosin V to step along actin for multiple ATPase cycles without dissociating.  相似文献   

13.
M Ikebe  D J Hartshorne 《Biochemistry》1986,25(20):6177-6185
It was shown previously [Ikebe, M., & Hartshorne, D. J. (1985) Biochemistry 24, 2380-2387] that the conformation of gizzard myosin, either 10S or 6S, influences proteolysis of myosin at two regions designated sites A and B. The studies reported here are focused on site A, which is located approximately 68,000 daltons from the N-terminus of the myosin heavy chain. With papain, Staphylococcus aureus protease, and actinidin, it is shown that the formation of 10S myosin reduces proteolysis at site A. Binding of actin to 6S myosin also hinders cleavage at site A for each of these proteases. To investigate binding of actin to 6S and 10S myosins, adenosine 5'-(beta,gamma-imidotriphosphate) (AMPPNP) is used as a substitute for ATP. In the presence of AMPPNP, it is shown that the 6S to 10S transition occurs and that 10S myosin binds actin with lower affinity than 6S myosin. For 6S myosin at high salt (0.35 M KCl) the dissociation constant of actin from the actin-myosin-nucleotide complex (K3) is approximately the same for phosphorylated (1.9 mol of P/mol of myosin) and dephosphorylated myosin, i.e., 1.3-2.4 microM, respectively. At lower ionic strength (0.17 M KCl) K3 for dephosphorylated myosin (10S myosin) is 42 microM and K3 for phosphorylated myosin (6S myosin) is 0.3 microM. These data show that the conformation of myosin influences the actin-myosin interaction. The constant (K4) for the dissociation of nucleotide from the actin-myosin-nucleotide complex varies slightly (in the range of 0.2-1.3 mM), but there is no marked change as a result of either a conformational change or phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Effect of low pH on single skeletal muscle myosin mechanics and kinetics   总被引:1,自引:0,他引:1  
Acidosis (low pH) is the oldest putative agent of muscular fatigue, but the molecular mechanism underlying its depressive effect on muscular performance remains unresolved. Therefore, the effect of low pH on the molecular mechanics and kinetics of chicken skeletal muscle myosin was studied using in vitro motility (IVM) and single molecule laser trap assays. Decreasing pH from 7.4 to 6.4 at saturating ATP slowed actin filament velocity (V(actin)) in the IVM by 36%. Single molecule experiments, at 1 microM ATP, decreased the average unitary step size of myosin (d) from 10 +/- 2 nm (pH 7.4) to 2 +/- 1 nm (pH 6.4). Individual binding events at low pH were consistent with the presence of a population of both productive (average d = 10 nm) and nonproductive (average d = 0 nm) actomyosin interactions. Raising the ATP concentration from 1 microM to 1 mM at pH 6.4 restored d (9 +/- 3 nm), suggesting that the lifetime of the nonproductive interactions is solely dependent on the [ATP]. V(actin), however, was not restored by raising the [ATP] (1-10 mM) in the IVM assay, suggesting that low pH also prolongs actin strong binding (t(on)). Measurement of t(on) as a function of the [ATP] in the single molecule assay suggested that acidosis prolongs t(on) by slowing the rate of ADP release. Thus, in a detachment limited model of motility (i.e., V(actin) approximately d/t(on)), a slowed rate of ADP release and the presence of nonproductive actomyosin interactions could account for the acidosis-induced decrease in V(actin), suggesting a molecular explanation for this component of muscular fatigue.  相似文献   

15.
The putative actin-binding interface of myosin is separated by a large cleft that extends into the base of the nucleotide binding pocket, suggesting that it may be important for mediating the nucleotide-dependent changes in the affinity for myosin on actin. We have genetically engineered a truncated version of smooth muscle myosin containing the motor domain and the essential light chain-binding region (MDE), with a single tryptophan residue at position 425 (F425W-MDE) in the actin-binding cleft. Steady-state fluorescence of F425W-MDE demonstrates that Trp-425 is in a more solvent-exposed conformation in the presence of MgATP than in the presence of MgADP or absence of nucleotide, consistent with closure of the actin-binding cleft in the strongly bound states of MgATPase cycle for myosin. Transient kinetic experiments demonstrate a direct correlation between the rates of strong actin binding and the conformation of Trp-425 in the actin-binding cleft, and suggest the existence of a novel conformation of myosin not previously seen in solution or by x-ray crystallography. Thus, these results directly demonstrate that: 1) the conformation of the actin-binding cleft mediates the affinity of myosin for actin in a nucleotide-dependent manner, and 2) actin induces conformational changes in myosin required to generate force and motion during muscle contraction.  相似文献   

16.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

17.
Myosin IIIA is specifically expressed in photoreceptors and cochlea and is important for the phototransduction and hearing processes. In addition, myosin IIIA contains a unique N-terminal kinase domain and C-terminal tail actin-binding motif. We examined the kinetic properties of baculovirus expressed human myosin IIIA containing the kinase, motor, and two IQ domains. The maximum actin-activated ATPase rate is relatively slow (k(cat) = 0.77 +/- 0.08 s(-1)), and high actin concentrations are required to fully activate the ATPase rate (K(ATPase) = 34 +/- 11 microm). However, actin co-sedimentation assays suggest that myosin III has a relatively high steady-state affinity for actin in the presence of ATP (K(actin) approximately 7 microm). The rate of ATP binding to the motor domain is quite slow both in the presence and absence of actin (K(1)k(+2) = 0.020 and 0.001 microm(-1).s(-1), respectively). The rate of actin-activated phosphate release is more than 100-fold faster (85 s(-1)) than the k(cat), whereas ADP release in the presence of actin follows a two-step mechanism (7.0 and 0.6 s(-1)). Thus, our data suggest a transition between two actomyosin-ADP states is the rate-limiting step in the actomyosin III ATPase cycle. Our data also suggest the myosin III motor spends a large fraction of its cycle in an actomyosin ADP state that has an intermediate affinity for actin (K(d) approximately 5 microm). The long lived actomyosin-ADP state may be important for the ability of myosin III to function as a cellular transporter and actin cross-linker in the actin bundles of sensory cells.  相似文献   

18.
Myosin V is an unconventional myosin that transports cargo such as vesicles, melanosomes, or mRNA on actin filaments. It is a two-headed myosin with an unusually long neck that has six IQ motifs complexed with calmodulin. In vitro studies have shown that myosin V moves processively on actin, taking multiple 36-nm steps that coincide with the helical repeat of actin. This allows the molecule to "walk" across the top of an actin filament, a feature necessary for moving large vesicles along an actin filament bound to the cytoskeleton. The extended neck length of the two heads is thought to be critical for taking 36-nm steps for processive movements. To test this hypothesis we have expressed myosin V heavy meromyosin-like fragments containing 6IQ motifs, as well as ones that shorten (2IQ, 4IQ) or lengthen (8IQ) the neck region or alter the spacing between 3rd and 4th IQ motifs. The step size was proportional to neck length for the 2IQ, 4IQ, 6IQ, and 8IQ molecules, but the molecule with the altered spacing took shorter than expected steps. Total internal reflection fluorescence microscopy was used to determine whether the heavy meromyosin IQ molecules were capable of processive movements on actin. At saturating ATP concentrations, all molecules except for the 2IQ mutant moved processively on actin. When the ATP concentration was lowered to 10 microm or less, the 2IQ mutant demonstrated some processive movements but with reduced run lengths compared with the other mutants. Its weak processivity was also confirmed by actin landing assays.  相似文献   

19.
E Mushtaq  L E Greene 《Biochemistry》1989,28(15):6478-6482
To elucidate the structure of the cross-bridge intermediates in the actomyosin ATPase cycle, several laboratories have added both ethylene glycol and AMP-PNP to muscle fibers. These studies suggested that ethylene glycol shifts the structure of myosin.AMP-PNP toward the weak-binding conformation, i.e., toward the structure of myosin.ATP. Since only the weak-binding conformation of myosin subfragment 1 (S-1) binds with no apparent cooperativity to the troponin-tropomyosin-actin complex (regulated actin), we used this as a probe to examine the conformation of various S-1.nucleotide complexes in ethylene glycol. Our results show that ethylene glycol markedly weakens the binding strength of S-1, S-1.ADP, and S-1.AMP-PNP to actin but has almost no effect on the binding strength of S-1.ATP. As in muscle fibers, at 40% ethylene glycol, the binding strength of S-1.AMP-PNP to actin becomes very similar to the binding strength of S-1.ATP. In the presence of troponin-tropomyosin, the binding of S-1.AMP-PNP to actin shows no apparent cooperativity in 40% ethylene glycol. Therefore, our results confirm that ethylene glycol shifts the structure of the myosin.AMP-PNP toward the weak-binding conformation. However, our results also suggest that ethylene glycol has a direct effect on the regulated actin complex. This is shown by the fact that ethylene glycol markedly increases the cooperative binding of S-1.ADP to regulated actin both in the presence and in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The long neck of unconventional myosin V is composed of six tandem "IQ motifs," which are fully occupied by calmodulin (CaM) in the absence of calcium. Calcium regulates the activity, the folded-to-extended conformational transition, and the processive run length of myosin V, and thus, it is important to understand how calcium affects CaM binding to the IQ motifs. Here we used electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional reconstructions of actin decorated with a motor domain-two IQ complex to provide an atomic model of myosin V in the presence of calcium. Calcium causes a major rearrangement of the bound CaMs, dissociation of CaM bound to IQ motif 2, and propagated changes in the motor domain. Tryptophan fluorescence spectroscopy showed that calcium-CaM binds to IQ motifs 1, 3, and 5 in a different conformation than apoCaM. Proteolytic cleavage was consistent with CaM preferentially dissociating from the second IQ motif. The enzymatic and mechanical functions of myosin V can, therefore, be modulated both by calcium-dependent conformational changes of bound CaM as well as by CaM dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号