首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During interspecies matings betweenBacillus subtilisandBacillus thuringiensissubsp.israelensis,transfer of conjugative transposon Tn916was detected at a frequency of 1.1 × 10−4transconjugants per donor. Tn916-dependent transfer of plasmids pC194 and pE194 was detected at frequencies of 1.4 × 10−5and 3.2 × 10−7transconjugants per donor, respectively. Similar frequencies were obtained during parallel matings with otherwise isogenic strains that contain Tn925instead of Tn916. Tn916- or Tn925-dependent transfer of plasmids pC194 or pUB110 from the recipient to the donor (retrotransfer) was not observed during inter- or intraspecies matings. Transposon-mediated plasmid transfer by Tn916and Tn925is a Rec independent event. Thus, the data from studies in which otherwise isogenic donor and recipient strains were used indicated that Tn916and Tn925are, from a functional point of view, much more similar than previously suggested.  相似文献   

2.
A limitation of genetic studies of the rumen bacterium, Butyrivibrio fibrisolvens, has been the availability of suitable vectors and transfer systems. Using the conjugative tetracycline resistant transposon, Tn916, the Staphylococcus aureus plasmid, pUB110, and the pUB110-based shuttle vector, pUBLRS, a conjugative transfer system was developed for B. fibrisolvens. B. fibrisolvens donor strains H17c2 and H17c12, containing Tn916 and pUB110 or pUBLRS, respectively, were used in mating experiments with selected B. fibrisolvens strains. Kanamycin resistant transconjugants, containing pUB110, of strains 193, 194, and 195 were detected at a combined average frequency of 7.78 × 10-7 per donor and 1.11 × 10-5 per recipient. Transconjugants of strains 193 and 194, containing pUBLRS, were detected at an average frequency of 1.22 × 10-6 per donor and 4.70 × 10-8 per recipient. Southern hybridization analysis confirmed the presence of pUB110 and pUBLRS in transconjugants. Results indicated that Tn916 was necessary for mobilization of pUB110 as transconjugants were not detected when the transposon was absent from the donor strains. The ability to mobilize pUB110 and pUBLRS between B. fibrisolvens strains provides a conjugative transfer system that circumvents problems encountered with electroporation.  相似文献   

3.
The conjugative transposon Tn916moves intercellularly via an excision/insertion mechanism that involves products ofint-Tnandxis-Tn.Tn5-insertion mutations in these genes were found to be complemented in anEnterococcus faecalishost by specific coresident transposons harboring the corresponding wild-type allele. A determinant designatedtraA,partially overlapping and divergently transcribed fromxis-Tn,is thought to encode a key positively acting regulatory protein needed for expression of conjugation functions. This locus was also shown to express atrans-acting product.  相似文献   

4.
In the present study, 20 enterococci belonging to the species Enterococcus faecalis (12 strains), Enterococcus faecium (4), Enterococcus durans (2), Enterococcus hirae (1) and Enterococcus mundtii (1) and originating from a total production chain of swine meat commodities were analysed to investigate the diversity of their tetracycline resistance gene tet(M). PCR–RFLP and sequence analysis showed that the tet(M) gene of most strains can be correlated with the Tn916 transposon. Conversely, tet(M) of six E. faecalis and the E. hirae strain, all isolated from pig faecal samples, may be associated with previously undescribed members of the Tn916-1545 transposon family. In vitro filter conjugation trials showed the ability of 50% of the enterococcal strains, including E. mundtii, to transfer the tet(M) gene (and the associated Tn916 and new transposons) to E. faecalis or Listeria innocua recipient strains. tet(M) gene transfer to L. innocua recipient was also directly observed in meat food products. Collectively, these sequence and conjugation data indicate that various transposons can be responsible of the spread of tetracycline resistance in enterococci and validate the opinion that Enterococcus species are important sources of antibiotic resistance genes for potentially pathogenic bacteria occurring in the food chain. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
A total of 20Bacillus subtilis F29-3 mutants defective in fengycin biosynthesis was obtained by Tn917 mutagenesis. Cloning and mapping results showed that the transposon in these mutants was inserted in eleven different locations on the chromosome. We were able to use the chromosomal sequence adjacent to the transposon as a probe to screen for cosmid clones containing the fengycin biosynthesis genes. One of the clones obtained, pFC660, was 46 kb long. Eight transposon insertion sites were mapped within this plasmid. Among the eleven different mutants analyzed, four mutants had Tn917 inserted in regions which encoded peptide sequences similar to part of gramicidin S synthetase, surfactin synthetase, and tyrocidine synthetase. Our results suggest that fengycin is synthesized nonribosomally by the multienzyme thiotemplate mechanism.  相似文献   

6.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

7.
The complete 50,237-bp DNA sequence of the conjugative and mobilizing multiresistance plasmid pRE25 from Enterococcus faecalis RE25 was determined. The plasmid had 58 putative open reading frames, 5 of which encode resistance to 12 antimicrobials. Chloramphenicol acetyltransferase and the 23S RNA methylase are identical to gene products of the broad-host-range plasmid pIP501 from Streptococcus agalactiae. In addition, a 30.5-kb segment is almost identical to pIP501. Genes encoding an aminoglycoside 6-adenylyltransferase, a streptothricin acetyltransferase, and an aminoglycoside phosphotransferase are arranged in tandem on a 7.4-kb fragment as previously reported in Tn5405 from Staphylococcus aureus and in pJH1 from E. faecalis. One interrupted and five complete IS elements as well as three replication genes were also identified. pRE25 was transferred by conjugation to E. faecalis, Listeria innocua, and Lactococcus lactis by means of a transfer region that appears similar to that of pIP501. It is concluded that pRE25 may contribute to the further spread of antibiotic-resistant microorganisms via food into the human community.  相似文献   

8.
Summary A simple method based upon the use of a Tn5 derivative, Tn5-Lux, has been devised for the introduction and stable expression of the character of bioluminescence in a variety of gram-negative bacteria. In Tn5-Lux, the luxAB genes of Vibrio harveyi encoding luciferase are inserted on a SalI-BglII fragment between the kanamycin resistance (Kmr) gene and the right insertion sequence. The transposon derivative was placed on a transposition suicide vehicle by in situ recombination with the Tn5 suicide vector pGS9, to yield pDB30. Mating between Escherichia coli WA803 (pDB30) and a strain from our laboratory, Pseudomonas sp. RB100C, gave a Kmr transfer frequency of 10-6 per recipient, a value 10 times lower than that obtained with the original suicide vehicle pGS9. Tn5-Lux was also introduced by insertion mutagenesis in other strains of gram-negative soil bacteria. The bioluminescence marker was expressed in the presence of n-decanal, and was monitored as chemiluminescence in a liquid scintillation counter. The recorded light intensities were fairly comparable among the strains, and ranged between 0.2 to 1.8x106 cpm for a cell density of 103 colony forming units/ml. Nodules initiated by bioluminescent strains of Rhizobium leguminosarum on two different hosts were compared for intensity of the bioluminescence they produced.  相似文献   

9.
Genes for (methyl)phenol degradation in Pseudomonas putida strain H (phl genes) are located on the plasmid pPGH1. Adjacent to the phl catabolic operon we identified a cryptic transposon, Tn5501, of the Tn3 family (class II transposons). The genes encoding the resolvase and the transposase are transcribed in the same direction, as is common for the Tn501 subfamily. The enzymes encoded by Tn5501, however, show only the overall homology characteristic for resolvases/integrases and transposases of Tn3-type transposons. Therefore it is likely that Tn5501 is not a member of one of the previously defined subfamilies. Inactivation of the conditional lethal sacB gene was used to detect transposition of Tn5501. While screening for transposition events we found another transposon integrated into sacB in one of the sucrose-resistant survivors. This element, Tn5502, is a composite transposon consisting of Tn5501 and an additional DNA fragment. It is flanked by inverted repeats identical to those of Tn5501 and the additional fragment is separated from the Tn5501 portion by an internal repeat (identical to the left terminal repeat). Transposition of phenol degradation genes could not be detected. Analysis of sequence data revealed that the phl genes are not located on a Tn5501-like transposon. Received: 21 July 1997 / Accepted: 7 July 1998  相似文献   

10.
The transposon-containing streptococcal plasmids pAM211, pCF10, and pINY1275 have been transferred at high frequency (10-2–10-3 per recipient, selecting for tetracycline resistance) to the Gram-positive anaerobe Clostridium acetobutylicum. Selection in the presence of two antibiotics (tetracycline and erythromycin) with the plasmids pAM 180 and pINY1275 yielded only low numbers of transconjugants (10-8 per recipient). Matings were done by combining liquid and filter mating procedures under anaerobic conditions. No plasmid DNA could be detected in the transconjugants selected on a minimal medium in the presence of tetracycline. DNA-DNA hybridization experiments with restricted chromosomal DNA using biotinylated pAM120::Tn916 as probe revealed the presence of homologous sequences in the transconjugants but not in Clostridium acetobutylicum wild type. The transconjugants were used as donors in mating experiments with tetracycline-sensitive Bacillus subtilis and Streptococcus lactis subspec. diacetylactis. In both cases tetracycline-resistant strains were found. Transfer frequencies in these experiments were less than 10-7 per recipient.  相似文献   

11.
A Bacillus subtilis transconjugant with a Tn916 chromosomal insert was obtained through mating with Escherichia coli carrying the transposon as a plasmid insert. Actinomycetes were identified as frequent transposon recipients following the introduction of the B. subtilis transconjugant into a soil microcosm.  相似文献   

12.
Summary Three plasmids containing the transposon Tn5, i.e. pSUP201::Tn5, pACYC184::Tn5 and pJB4JI were transferred from Escherichia coli to Rhodopseudomonas capsulata in order to mutagenize the genome. Mutants defective in bacteriochlorophyll and carotenoid synthesis and mutants unable to form the photochemical reaction center or one of the light-harvesting complexes were isolated. Of special interest were mutants that could not form the light-harvesting complex B800-850. Two of these mutants synthesized only two of the three polypeptides of this complex whereas the corresponding near infrared absorbance bands were not observed. Complementation analysis with the Rprime plasmid pRPS404, which contains a 50 kb region of the genome of R. capsulata carrying most genes responsible for expression of photosynthetic apparatus, revealed that some genes of the B800-850 light-harvesting complex lie outside this photosynthetic gene cluster.Abbreviations Bchl Bacteriochlorophyll - Cm chloramphenicol - Km kanamycin - Tc tetracycline - Ap ampicillin - Gm gentamicin - Spc spectinomycin  相似文献   

13.
Summary A rapid and general procedure has been devised for the pBR322-mediated cloning in Escherichia coli of Bacillus subtilis chromosomal DNA extending in a specified direction from any Tn917 insertion. Derivatives of Tn917 have been constructed that contain a pBR322-derived replicon, together with a chloramphenicol-resistance (Cmr) gene of Gram-positive origin (selectable in B. subtilis), inserted by ligation in two orientations into a SalI restriction site located near the center of the transposon. When linearized plasmid DNA carrying such derivatives was used to transform to Cmr B. subtilis bacteria already containing a chromosomal insertion of Tn917, the pBR322 sequences efficiently became integrated into the chromosomal copy of the transposon by homologous recombination. It was then possible to clone chromosomal sequences adjacent to either transposon insertion junction into E. coli, using a selection for ampicillin-resistance, by transforming CaCl2-treated cells with small amounts of insert-containing DNA that had been digested with various restriction enzymes and then ligated at a dilute concentration. Because pBR322 sequences may be inserted by recombination in either orientation with respect to the transposon arms, a single restriction enzyme (such as EcoRi or SphI) that has a unique recognition site in pBR322 DNA may be used to separately clone chromosomal DNA extending in either direction from the site of any transposon insertion. A family of clones generated from the region of an insertional spo mutation (spoIIH::Tn917) was used in Southern hybridization experiments to verify that cloned material isolated with this procedure accurately reflected the arrangement of sequences present in the chromosome. Strategies are discussed for taking advantage of certain properties inherent in the structure of clones generated in this way to facilitate the identification and study of promoters of insertionally mutated genes.  相似文献   

14.
Summary A derivative of the IncP1 plasmid RP4, carrying the thermoinducible prophage Mucts62, was obtained in Escherichia coli K 12 J53 (RP4). It was impossible to maintain the hybrid plasmid RP4: Mucts62 in Rhizobium meliloti GR4. Thus, it was used as a vehicle for introducing the ampicillinresistant transposon Tn1 introducing the ampicillinresistant transposon Tn1 into the R. meliloti genome.Transposition of Tn1 did not generate auxotrophic strains, suggesting that the insertion of Tn1 into the R. meliloti genome was relatively specific. Two chromosomal hot spots for Tn1 insertion were identified by cotransductional analysis, after general transduction by phage DF2. Plasmid-curing experiments, carried out by heat treatment, revealed that symbiotic plasmid(s) also contain at least one site for Tn1 insertion.  相似文献   

15.
Summary Transposon Tn7 was inserted into wide host range plasmid pSUP202 and used as a suicide plasmid vehicle for transposon mutagenesis in Rhizobium leguminosarum. Tn7 is transposed with high frequency into the self-transmissible plasmid pJB5JI without affecting the transfer, nodulation and nitrogen fixation functions. Tn7 transposition provides a useful tool for marking symbiotic plasmids.  相似文献   

16.
Tetracycline-resistant Lactococcus lactis strains originally isolated from Polish raw milk were analyzed for the ability to transfer their antibiotic resistance genes in vitro, using filter mating experiments, and in vivo, using germfree rats. Four of six analyzed L. lactis isolates were able to transfer tetracycline resistance determinants in vitro to L. lactis Bu2-60, at frequencies ranging from 10−5 to 10−7 transconjugants per recipient. Three of these four strains could also transfer resistance in vitro to Enterococcus faecalis JH2-2, whereas no transfer to Bacillus subtilis YBE01, Pseudomonas putida KT2442, Agrobacterium tumefaciens UBAPF2, or Escherichia coli JE2571 was observed. Rats were initially inoculated with the recipient E. faecalis strain JH2-2, and after a week, the L. lactis IBB477 and IBB487 donor strains were introduced. The first transconjugants were detected in fecal samples 3 days after introduction of the donors. A subtherapeutic concentration of tetracycline did not have any significant effect on the number of transconjugants, but transconjugants were observed earlier in animals dosed with this antibiotic. Molecular analysis of in vivo transconjugants containing the tet(M) gene showed that this gene was identical to tet(M) localized on the conjugative transposon Tn916. Primer-specific PCR confirmed that the Tn916 transposon was complete in all analyzed transconjugants and donors. This is the first study showing in vivo transfer of a Tn916-like antibiotic resistance transposon from L. lactis to E. faecalis. These data suggest that in certain cases food lactococci might be involved in the spread of antibiotic resistance genes to other lactic acid bacteria.The abuse of antibiotic use is regarded as the major cause of the accumulation and dissemination of antibiotic resistance genes in the environment (33). For several decades, studies on selection and spread of antibiotic resistance genes have focused mainly on clinically relevant microbial species. Nevertheless, many investigators have recently speculated that commensal bacteria, including lactic acid bacteria (LAB), may act as reservoirs of antibiotic resistance determinants (40). Genes conferring acquired resistance to tetracycline, erythromycin, and vancomycin have been detected and characterized for Lactococcus, Enterococcus, and Lactobacillus species isolated from fermented meat and milk products (13, 18, 23, 49, 50, 56). Introduction of such bacteria into humans through ingestion of commercial food products may have negative consequences by dissemination of antibiotic resistance genes via the food chain to the resident microbiota of the human gastrointestinal tract and, in the worst case, to pathogenic bacteria (4, 17, 55). Therefore, it seems important to assess the risk of antibiotic resistance gene transmission in the environment and in the guts of animals and humans and to establish the genetic basis of the detected resistance and transmission mechanisms.Dissemination of genetic information by horizontal gene transfer is common in the microbial world and is accomplished mainly by the following three mechanisms: natural transformation, conjugation, and transduction (14). Many antibiotic resistance genes have been detected on mobile genetic elements, such as plasmids and conjugative transposons, and it is believed that conjugation is the main mode of horizontal dissemination of antibiotic resistance determinants between bacterial species.Conjugative transposons mediate their own transfer from a donor DNA molecule in one bacterial cell to a target molecule in another cell. Tn916, which spans about 18 kb and confers resistance to tetracycline via tet(M), belongs to the Tn916-Tn1545 family of conjugative transposons and was first identified in Enterococcus faecalis DS16 (20). It is able to be maintained in a wide range of clinically important gram-positive and gram-negative species (12, 44).Excision of Tn916 from the donor molecule is required for conjugative transposition and results in a covalently closed circular transposon molecule that is an intermediate in conjugal transfer (10). A single strand of the covalently closed circular transposon is transferred to the recipient cell, where the complementary strand is synthesized to recreate a double-stranded circular transposon, which inserts into a target site (48).Lactococcus lactis strains are used worldwide as starter organisms in the dairy industry and for the manufacturing of many fermented products. Conjugation has been described widely for lactococci, although mainly for exploitation of this process for development of improved starter strains (22, 38, 39, 51, 53).The objective of the present study was to establish the ability of wild-type L. lactis isolates to transfer tetracycline resistance determinants to gram-positive bacteria, namely, L. lactis Bu2-60, E. faecalis JH2-2, and Bacillus subtilis YBE01, and to gram-negative bacteria, namely, Pseudomonas putida KT2442, Agrobacterium tumefaciens UBAPF2, and Escherichia coli JE2571, by using the filter mating approach. In order to confirm whether these donor strains were able to transfer the tetracycline resistance genes to E. faecalis JH2-2 in vivo in the gastrointestinal tract, we also used germfree rats.  相似文献   

17.
Tn916 and similar elements are very common in clinical enterococcal isolates, and are responsible for transmission of a variety of resistance determinants. It is commonly assumed that clinical strains carrying Tn916 have a single copy, although the actual number of copies in clinical isolates has never been systematically studied. We report a clinical isolate of Enterococcus faecium in which three distinct and excision-proficient copies of Tn916-like elements are present in the genome. All of the elements contain tet(M) genes, at least one of which confers resistance to tetracycline and minocycline. Two elements (Tn6085a, Tn6085b) are indistinguishable, containing an inserted 2758 bp Group II intron at the start of open reading frame Tn916ORF_06. The third (Tn6084) also contains the intron, but also has an ISEfa11 integrated upstream of tet(M). All three copies are able to excise from plasmid vectors when cloned in E. coli, and at least two of the elements can transfer to an E. faecium recipient strain. These data indicate that nearly identical Tn916-like elements encoding Tet(M)-mediated tetracycline/minocycline resistance can coexist in clinical E. faecium isolates.  相似文献   

18.
Plasmid-free Enterococcus faecalis excrete peptides (sex pheromones) which specifically induce a mating response in strains harboring certain conjugative plasmids. The response is characterized by the synthesis of a “fuzzy” surface material, visible by electron microscopy, which is believed to facilitate the aggregation of donors and recipients. Transconjugants which receive a specific plasmid shut down the production of endogenous pheromone; however, they continue to produce pheromones specific for donors harboring different classes of plasmids. In this review, we summarize what is known about the biochemistry and genetics of this phenomenon. Some emphasis is given to the hemolysin plasmid pAD1 and the regulation of its conjugal transfer.  相似文献   

19.
Tn1545: a conjugative shuttle transposon   总被引:13,自引:0,他引:13  
Summary Tn1545, from Streptococcus pneumoniae BM4200, confers resistance to kanamycin (aphA-3), erythromycin (ermAM) and tetracycline (tetM). The 25.3 kb element is self-transferable to various Gram-positive bacterial genera where it transposes. Tn1545 was cloned in its entirety in the recombination deficient Escherichia coli HB101 where it was unstable. The three resistance genes aphA-3, ermAM and tetM were expressed but were not transferable to other E. coli cells. Tn1545 transposed from the hybrid plasmid to multiple sites of the chromosome of its new host. The element re-transposed, at a frequency of 5×10-9, from the chromosome to various sites of a conjugative plasmid where it could be lost by apparently clean excision. The element transformed and transposed to the chromosome of Bacillus subtilis. The properties of the conjugative shuttle transposon Tn1545 may account for the recent emergence of genes from Gram-positive bacteria in Gramnegative organisms.  相似文献   

20.
Mechanisms for the intercellular transfer of VanB-type vancomycin resistance determinants and for the almost universal association of these determinants with those for high-level ampicillin resistance remain poorly defined. We report the discovery of Tn5382, a ca. 27-kb putative transposon encoding VanB-type glycopeptide resistance in Enterococcus faecium. Open reading frames internal to the right end of Tn5382 and downstream of the vanXB dipeptidase gene exhibit significant homology to genes encoding the excisase and integrase of conjugative transposon Tn916. The ends of Tn5382 are also homologous to the ends of Tn916, especially in regions bound by the integrase enzyme. PCR amplification experiments indicate that Tn5382 excises to form a circular intermediate in E. faecium. Integration of Tn5382 in the chromosome of E. faecium C68 has occurred 113 bp downstream of the stop codon for the pbp5 gene, which encodes high-level ampicillin resistance in this clinical isolate. Transfer of vancomycin, ampicillin, and tetracycline resistance from C68 to an E. faecium recipient strain occurs at low frequency in vitro and is associated with acquisition of a 130- to 160-kb segment of DNA that contains Tn5382, the pbp5 gene, and its putative repressor gene, psr. The interenterococcal transfer of this large chromosomal element appears to be the primary mechanism for vanB operon spread in northeast Ohio. These results expand the known family of Tn916-related transposons, suggest a mechanism for vanB operon entry into and dissemination among enterococci, and provide an explanation for the nearly universal association of vancomycin and high-level ampicillin resistance in clinical E. faecium strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号