首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique of continuous water activity control was used to examine the effects of water activity on enzyme catalysis in organic media. Esterification catalyzed by Rhizopus arrhizus lipase was preferably carried out at a water activity of 0.33, which resulted in both maximal initial reaction rate and a high yield. When Pseudomonas lipase was used as catalyst it was beneficial to start the reaction at high water activity (giving the optimal reaction rate with this enzyme) and then shift to a lower water activity toward the end of the reaction to obtain a high yield. The apparent equilibrium constant of the reaction was influenced by the water activity of the organic solvent. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
《Process Biochemistry》2014,49(10):1673-1681
The biosynthesis of esters is currently of much commercial interest because of the increasing popularity and demand for natural products among consumers. Biotransformation and enzymatic methods of ester synthesis are more effective when performed in non-aqueous media. In present study, an organic solvent stable Pseudomonas sp. DMVR46 lipase was partially purified by acetone precipitation and ion exchange chromatography with 28.95-fold purification. The molecular mass of the lipase was found to be ∼32 kDa. The partially purified lipase was optimally active at 37 °C and pH 8.5. The enzyme showed greater stability toward organic solvents such as isooctane, cyclohexane and n-hexane retaining more than 70% of its initial activity. The metal ions such as Ca2+, Ba2+ and Mg2+ had stimulatory effects on lipase activity, whereas Co2+ and Zn2+ strongly inhibited the activity. Also lipase exhibited variable specificity/hydrolytic activity toward different 4-nitrophenyl esters. DMVR46 lipase was further immobilized into AOT-based organogels used for the synthesis of flavor ester pentyl valerate in presence of organic solvents. The organogels showed repeated use of enzyme with meager loss of activity even upto 10 cycles. The solvent-stable lipase DMVR46 thus proved to be an efficient catalyst showing an attractive potency for application in biocatalysis under non-aqueous environment.  相似文献   

3.
A microbial lipase from Pseudomonas aeruginosa TE3285 was treated in anhydrous diisopropyl ether with three kinds of serine-reactive reagents, ethyl p-nitrophenyl methylphosphonate (ENMP), diisopropyl fluorophosphate (DFP), and phenylmethylsulfonyl fluoride (PMSF) to lose its catalytic activity for both transesterification in an organic solvent and ester hydrolysis in aqueous system. In contrast with the facile inactivation in an organic solvent, no or very slow inactivation was observed in an aqueous solution. The lipase was shown to behave more like a typical serine enzyme in an organic solvent than in aqueous solution with regard to the chemical inactivation by serine-reactive reagents. The unique behavior of the lipase in an organic solvent may be associated with inferfacial activation of the lipase, which is one of the most distinct characteristics of the lipase family, and the activiation of lipase could be induced by a hydrophobic interaction with an organic solvent.  相似文献   

4.
The activity of different lipase (from Pseudomonas cepacia) forms, such as crude powder (crude PC), purified and lyophilized with PEG (PEG + PC), covalently linked to PEG (PEG-PC), cross-linked enzyme crystals (CLEC-PC), and immobilized in Sol-Gel-AK (Sol-Gel-AK-PC) was determined, at various water activities (aw), in carbon tetrachloride, benzene and 1,4-dioxane. The reaction of vinyl butyrate with 1-octanol was employed as a model and both transesterification (formation of 1-octyl butyrate) and hydrolysis (formation of butyric acid from vinyl butyrate) rates were determined. Both rates depended on the lipase form, solvent employed, and aw value. Hydrolysis rates always increased as a function of aw, while the optimum of aw for transesterification depended on the enzyme form and nature of the solvent. At proper aw, some lipase forms such as PEG + PC, PEG-PC, and Sol-Gel-AK-PC had a total activity in organic solvents (transesterification plus hydrolysis) which was close to (39 and 48%) or even higher than (130%) that displayed by the same amount of lipase protein in the hydrolysis of tributyrin-one of the substrates most commonly used as standard for the assay of lipase activity-in aqueous buffer. Instead, CLEC-PC and crude PC were much less active in organic solvents (2 and 12%) than in buffer. The results suggest that enzyme dispersion and/or proper enzyme conformation (favored by interaction with PEG or the hydrophobic Sol-Gel-AK matrix) are essential for the expression of high lipase activity in organic media.  相似文献   

5.
The enzymatic coproduction of biodiesel and glycerol carbonate by the transesterification of soybean oil was studied using lipase as catalyst in organic solvent. To produce biodiesel and glycerol carbonate simultaneously, experiments were designed sequentially. Enzyme screening, the molar ratio of dimethyl carbonate (DMC) to soybean oil, reaction temperature and solvent effects were investigated. The results of enzyme screening, at 100 g/L Novozym 435 (immobilized Candida antarctica lipase B), biodiesel and glycerol carbonate showed conversions of 58.7% and 50.7%, respectively. The optimal conditions were 60 °C, 100 g/L Novozym 435, 6.0:1 molar ratio with tert-butanol as solvent: 84.9% biodiesel and 92.0% glycerol carbonate production was achieved.  相似文献   

6.
LST‐03 lipase from an organic solvent‐tolerant Pseudomonas aeruginosa LST‐03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent‐stability of LST‐03 lipase was attempted by directed evolution. The structural gene of the LST‐03 lipase was amplified by the error prone‐PCR method. Organic solvent‐stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri‐n‐butyrin and which overlaid a plate medium. And the organic solvent‐stability was also confirmed by measuring the half‐life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent‐stability in the presence of DMSO. The organic solvent‐stabilities of mutated LST‐03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half‐lives of the LST‐03‐R65 lipase in the presence of cyclohexane and n‐decane were about 9 to 11‐fold longer than those of the wild‐type lipase, respectively. Some substituted amino acid residues of mutated LST‐03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

7.
The cell-bound lipase from Rhizopus chinensis CCTCC M201021 with high catalysis ability for ester synthesis was located as a membrane-bound lipase by the treatments of Yatalase™ firstly. In order to improve its synthetic activity in non-aqueous phase, the pretreatments of this enzyme with various organic solvents were investigated. The pretreatment with isooctane improved evidently the lipase synthetic activity, resulting in about 139% in relative synthetic activity and 115% in activity recovery. The morphological changes of mycelia caused by organic solvent pretreatments could influence the exposure of the membrane-bound enzyme from mycelia and the exhibition of the lipase activity. The pretreatment conditions with isooctane and acetone were further investigated, and the optimum effect was obtained by the isooctane pretreatment at 4°C for 1 h, resulting in 156% in relative synthetic activity and 126% in activity recovery. When the pretreated lipases were employed as catalysts for the esterification production of ethyl hexanoate in heptane, higher initial reaction rate and higher final molar conversion were obtained using the lipase pretreated with isooctane, compared with the untreated lyophilized one. This result suggested that the pretreatment of the membrane-bound lipase with isooctane could be an effective method to substitute the lyophilization for preparing biocatalysts used in non-aqueous phase reactions.  相似文献   

8.
The commercial application of lipases as biocatalysts for organic synthesis requires simple but efficient methods to immobilize the enzyme, yielding highly stable and active biocatalysts which are easy to recover. In this study, we present a novel method to achieve lipase immobilization by entrapment in chemically inert hydrophobic silica gels which are prepared by hydrolysis of alkyl-substituted silanes in the presence of the enzyme. A typical immobilization procedure uses: an aqueous solution of lipase; sodium fluoride as a catalyst; and additives like polyvinyl alcohol or proteins and alkoxysilane derivatives like RSi-(OMe)(3) with R = alkyl, aryl, or alkoxy as gel precursors. The effect of various immobilization parameters like stoichiometric ratio of water, silane, type and amount of additive, type and amount of catalyst, and type of silane has been carefully studied. The new method is applicable for a wide variety of lipases, yielding immobilized lipases with esterification activities enhanced by a factor of up to 88, compared to the commercial enzyme powders under identical conditions. Studies on the stability of sol-gel immobilized lipases under reaction conditions or storage (dry, in aqueous or organic medium) revealed an excellent retention of enzymatic activity. The possible reasons for the increased enzyme activities are discussed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Candida rugosa lipase is a very useful catalyst, but its rapid inactivation by simple alcohols is a drawback. The present study was focussed on the encapsulation of this enzyme in silica aerogels reinforced with quartz fiber felt. The activity of the immobilized lipase in an organic solvent could be significantly improved over that of the free enzyme and of previous immobilization techniques, by evaporating the alcohol formed during a pre-hydrolysis of the silica precursor, before adding the aqueous enzyme solution. The alcohol evaporation technique was previously used by other authors to immobilized enzymes, but applied to xerogels dried by evaporation, while in the present case the wet gels obtained were dried by the CO2 supercritical method to obtain aerogels. Besides, such silica aerogels were also reinforced by impregnating a commercial ceramic quartz fiber felt of St. Gobain with the silica sol containing the enzyme, before gelation. The ceramic composites heterogeneous biocatalysts obtained could be used for a large number of times without any apparent deterioration.  相似文献   

10.
Rhizopus arrhizus lipase immobilized on celite was used to prepare isomerically pure 2-monoglycerides by alcoholysis of triglycerides in organic media. Reaction parameters such as choice of solvent, choice of alcohol, and alcohol concentration were studied. When 12.5 mM tripalmitin was used as substrate, methyl-tert-butyl ether was the best solvent for alcoholysis at water activity 0.11. Ethanol gave the highest yield (97%) at an optimal ethanol concentration of 200–300 mM. At higher alcohol concentrations, the enzyme activity was substantially lowered. The enzyme preparation showed high stability in repeated-batch reactions.  相似文献   

11.
The resolution of 1,2-O-isopropylidene glycerol via enzyme catalyzed hydrolysis of the corresponding benzoic ester was investigated. Using lipase PS from Pseudomonas cepacia, we determined the influence of organic co-solvents on the activity and enantioselectivity of the enzyme. The performance of the lipase was correlated to the nature (logP, ε,μ and the percentage of the organic media. The highest enzymatic activity was found in solvents completely miscible or completely immiscible in water. The enzyme stereoselectivity was inversely related to the logP of the solvent.  相似文献   

12.
The resolution of 1,2-O-isopropylidene glycerol via enzyme catalyzed hydrolysis of the corresponding benzoic ester was investigated. Using lipase PS from Pseudomonas cepacia, we determined the influence of organic co-solvents on the activity and enantioselectivity of the enzyme. The performance of the lipase was correlated to the nature (logP, ?,μ and the percentage of the organic media. The highest enzymatic activity was found in solvents completely miscible or completely immiscible in water. The enzyme stereoselectivity was inversely related to the logP of the solvent.  相似文献   

13.
微环境对脂肪酶催化拆分外消旋2-辛醇的影响       杨红,曹淑桂,韩四平,黄仲丽,杨同书(吉林大学酶工程国家重点实验室,长春130023)手性2-辛醇不仅是制备液晶材料不可缺少的重要手性原料,也是合成具有光学活性的医药和农药的重要手性中间体.本文...  相似文献   

14.
Lu J  Nie K  Wang F  Tan T 《Bioresource technology》2008,99(14):6070-6074
The immobilized lipase Candida sp. 99-125 catalyzed methanolysis of glycerol trioleate was studied in twelve different solvents in order to deduce the solvent effect through an attempt to correlate the highest yield with such solvent properties as hydrophobicity (log P), dielectric constant (epsilon), and Hildebrand solubility parameter (delta). The results showed that the conversion of glycerol trioleate and yield of oleic acid methyl ester were quite dependent on the solvent. The catalyst lipase in various solvents also needed different optimum amount of water to keep its maximum activity, and generally this lipase in more hydrophobic solvents required more water. The correlation between the highest yield and log P value was found to be reasonable except deviation of data points of certain solvents, while no obvious correlation existed between the other two parameters, dielectric constant (epsilon) and Hildebrand solubility parameter (delta), and the enzyme activity. The study revealed that more hydrophobic solvents such as n-hexane or cyclohexane were more suitable solvents for Candida sp. 99-125 catalyzed transesterification of glycerol trioleate to oleic acid methyl ester.  相似文献   

15.
Stereoselective esterification of three isomers of trimethylsilylpropanol, 1-trimethylsilyl-2-propanol, 1-trimethylsilyl-1-propanol, and 2-trimethylsilyl-1-propanol, was systematically studied with five kinds of hydrolases in an organic solvent system in connection with the structure of the compounds. The hydrolases were found to be able to esterify these organosilicon compounds, even -hydroxyalkylsilanes, which are unstable under the conditions of acid-catalysed esterification, and the highly optically active organosilicon compounds were successfully prepared with the selected hydrolases. Even a primary alcohol, 2-trimethylsilyl-1-propanol, was stereoselectively esterified by lipase. Furthermore, comparative studies were made by using their carbon counterparts. The silicon atom in the substrates was found to enhance the enzyme stereoselectivity in some cases, but its effect on the substrate reactivity was dependent on the structure of the substrates. These results are discussed based on the specific characters of the silicon atom. Correspondence to: A. Tanaka  相似文献   

16.
Psychrotropic Bacillus sphaericus producing solvent stable cold-active lipase upon growth at low temperature was isolated from Gangotri glacier. Optimal parameters for lipase production were investigated and the strain was able to produce lipase even at 15 °C. An incubation period of 48 h and pH 8 was found to be conducive for cold-active lipase production. The addition of trybutyrin as substrate and lactose as additional carbon source increased lipase production. The enzyme was purified up to 17.74-fold by ammonium sulphate precipitation followed by DEAE cellulose column chromatography. The optimum temperature and pH for lipase activity were found to be 15 °C and 8.0, respectively. The lipase was found to be stable in the temperature range 20–30 °C and the pH range 6.0–9.0. The protein retained more than 83 % of its initial activity after exposure to organic solvents. The lipase exhibited significant stability in presence of acetone and DMSO retaining >90 % activity. The enzyme activity was inhibited by 10 mM CuSO4 and EDTA but showed no loss in activity after incubation with other metals or inhibitors examined in this study.  相似文献   

17.
Lipase’s thermostability and organic solvent tolerance are two crucial properties that enable it to function as a biocatalyst. The present study examined the characteristics of two recombinant thermostable lipases (Lk2, Lk3) based on transesterification activity. Conversion of C12-C18 methyl ester with paranitrophenol was investigated in various organic solvent. Both lipases exhibited activity on difference carbon chain length (C12 - C18, C18:1, C18:2) of substrates. The activity of Lk2 was higher in each of substrate compared with that of Lk3. Experimental findings showed that the best substrates for Lk2 and Lk3 are C18:1 and C18:2 respectively, in agreement with the computational analysis. The activity of both enzymes prefers on nonpolar solvent. On nonpolar solvent the enzymes are able to keep its native folding shown by the value of radius gyration, solvent–enzyme interaction and orientation of triad catalytic residues. Lk3 appeared to be more thermostable, with maximum activity at 55°C. The presence of Fe3+ increased the activity of Lk2 and Lk3. However, the activity of both enzymes were dramatically decreased by the present of Ca2+ despite of the enzymes belong to family I.1 lipase known as calcium dependent enzyme. Molecular analysis on His loop of Lk2 and Lk3 on the present of Ca2+ showed that there were shifting on the orientation of catalytic triad residues. All the data suggest that Lk2 and Lk3 are novel lipase on the family I.1 and both lipase available as a biocatalyst candidate.  相似文献   

18.
Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]‐HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active‐site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.  相似文献   

19.
Summary Treatment with dithiothreitol stabilized the esterification activity of Celite-adsorbed lipase fromCandida cylindracea in organic solvent systems. The treated lipase showed the stereoselectivity in the esterification of menthol with 5-phenylvaleric acid as in the case of the native enzyme.  相似文献   

20.
Summary Activity of lipase (candida cylindracea) in reversed micelles was found to be sustained over extended periods of time in the presence of amphiphilic substrates. Esterification of palmitic or oleic acid and octanol was studied to characterize the lipase activity in AOT/isooctane reversed micelles. Complete conversion was possible even in the presence of stoichiometric excess of water. In the absence of acyl substrates, the enzyme lost all its activity within a few hours in reversed micelles. Thermal effects on the enzyme activity were studied, and the enzyme stability in reversed micelles was compared to that in a bulk organic solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号