首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim MS  Rossi M  Abbott CR  AlAhmed SH  Smith DM  Bloom SR 《Peptides》2002,23(6):1069-1076
Intracerebroventricular (ICV) injection of Agouti related protein (AgRP), an endogenous melanocortin 3 and 4 receptor (MC3/4-R) antagonist, produces a prolonged increase in food intake. To clarify the roles of the MC3-R and MC4-R in AgRP-induced hyperphagia, the feeding effect of AgRP (83-132) was compared with that of the selective MC4-R antagonist, JKC-363 (cyclic [Mpr11, D-Nal14, Cys18, Asp22-NH2]-beta-MSH11-22). Single ICV administration of AgRP (83-132) increased food intake for 48 h whilst ICV JKC-363 increased food intake for 8h. An increase in body weight at 24 and 48 h was observed following AgRP (83-132) but not JKC-363 treatment. These data suggest that the sustained orexigenic action of AgRP (83-132) may not be through MC4-R antagonism.  相似文献   

2.
alpha-Melanocyte-stimulating hormone (alpha-MSH) appears to play a tonic inhibitory role in feeding and energy storage. MTII, a specific synthetic MC3-R/MC4-R agonist, has similar effects on feeding in rats. The current studies demonstrate that PVN administration of alpha-MSH or MTII decreases nocturnal and NPY-stimulated food intake without causing aversive effects. Co-administration with NPY of 600 pmol alpha-MSH or 1 pmol MTII into the PVN caused a significant decrease in NPY-induced feeding. PVN administration of MTII or alpha-MSH at doses effective to suppress feeding did not cause conditioned taste aversion (CTA). ICV administration of alpha-MSH, however, did cause weak CTA. These results indicate that the potent effects on feeding of MC3-R and MC4-R agonists when injected into the PVN are not due to aversive effects.  相似文献   

3.
4.
Yoshimatsu H 《Peptides》2006,27(2):326-332
Hypothalamic neuronal histamine and its H(1) receptor (H(1)-R) form part of the leptin signaling pathway in the brain, and regulate body weight and adiposity by affecting food intake and energy expenditure. The pro-opiomelanocortin (POMC)-melanocortin 4 receptor (MC4-R) is also important for leptin signaling. We investigated whether and how these two neuronal pathways interact in regulating energy metabolism. From studies of agouti yellow (A(y)/a) obese mice, a model of a defect in POMC-MC4-R signaling, we concluded that the histamine H(1)-R signaling pathway is independent of the POMC-MC4-R complex in regulating food intake, energy metabolism, and adiposity.  相似文献   

5.
Pregnancy is characterized by an increase in food intake that, in turn, produce a positive energy balance in order to face the considerable metabolic demands associated with the challenge of reproduction. Since hypothalamus is a key brain region involved in many peripheral signals and neuronal pathways that control energy homeostasis and food intake, we investigated if during pregnancy the increase in food intake is mediated by stimulating orexigenic and/or inhibiting anorexigenic neural pathways. We examined hypothalamic gene expressions of Ob-Rb, NPY, AgRP, POMC, MC4-R, and preproorexins in pregnant Wistar rats at day 19 of gestation. Food intake and body weight were increased progressively during the pregnancy. Visceral fat mass depots and serum leptin levels were also increased when compared with virgin animals. No differences were found in mRNA expression of Ob-Rb, POMC, MC4-R, NPY or preproorexin between virgin and pregnant animals. However, pregnancy produced a selective increase in AgRP mRNA levels. These results indicate that the positive energy balance that occurred during pregnancy can hardly be explained by changes in Ob-Rb despite hyperleptinemia associated with pregnancy. The enhanced expression of AgRP suggests the involvement of this neuropeptide in mediating pregnancy-associated hyperphagia.  相似文献   

6.
Intracerebroventricular administration of gut peptide PYY3-36 stimulates food intake. In contrast, peripheral administration inhibits food intake, suggesting that the peptide has the opposite effect by virtue of accessing a unique subset of brain sites. A previous study suggested that peripheral PYY3-36 activates anorexigenic POMC neurons in the arcuate nucleus, and this was proposed to be the mechanism underlying the peptide's anorexigenic activity. Here, we demonstrate in an electrophysiological slice preparation that, in contrast to the original model, PYY3-36 potently and reversibly inhibits POMC neurons via postsynaptic Y2 receptors. These data show a complex role for Y2 receptors in regulation of the NPY/POMC circuitry, as they are present as inhibitory receptors on both the orexigenic NPY neurons as well as the anorexigenic POMC neurons. Secondly, these data argue against a direct role of POMC neurons in mediating the anorexigenic response to administration of peripheral PYY3-36.  相似文献   

7.
Metabolic, cognitive, and environmental factors processed in the forebrain modulate food intake by changing the potency of direct controls of meal ingestion in the brain stem. Here, we behaviorally and anatomically test the role of the hypothalamic proopiomelanocortin (POMC) system in mediating some of these descending, indirect controls. Melanotan II (MTII), a stable melanocortin 4 receptor (MC4R) and melanocortin 3 receptor (MC3R) agonist injected into the fourth ventricle near the dorsal vagal complex, potently inhibited 14-h food intake by decreasing meal size but not meal frequency; SHU9119, an antagonist, increased food intake by selectively increasing meal size. Furthermore, MTII injected into the fourth ventricle increased and SHU9119 tended to decrease heart rate and body temperature measured telemetrically in freely moving rats. Numerous alpha-melanocyte-stimulating hormone-immunoreactive axons were in close anatomical apposition to nucleus tractus solitarius neurons showing c-Fos in response to gastric distension, expressing neurochemical phenotypes implicated in ingestive control, and projecting to brown adipose tissue. In retrograde tracing experiments, a small percentage of arcuate nucleus POMC neurons was found to project to the dorsal vagal complex. Thus melanocortin signaling in the brain stem is sufficient to alter food intake via changing the potency of satiety signals and to alter sympathetic outflow. Although the anatomical findings support the involvement of hypothalamomedullary POMC projections in mediating part of the descending, indirect signal, they do not rule out involvement of POMC neurons in the nucleus tractus solitarius in mediating part of the direct signal.  相似文献   

8.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

9.
Marks DL  Hruby V  Brookhart G  Cone RD 《Peptides》2006,27(2):259-264
High levels of binding sites for melanocortin peptides exist within the arcuate nucleus, and a functional response to melanocortin peptides has been demonstrated in arcuate POMC neurons. Because the MC3R is thought to function as an inhibitory autoreceptor on POMC neurons, we reasoned that peripheral injections of MC3R-specific agonists would act within the arcuate nucleus to inhibit POMC neurons and thereby stimulate feeding. We demonstrate that the peptidergic MC3R agonist, d-Trp(8)-gamma-MSH, stimulates feeding via the MC3R when injected peripherally. These data provide the first evidence that feeding can be stimulated by peripheral injection of MC3R-specific agonists.  相似文献   

10.
Dube MG  Pu S  Kalra SP  Kalra PS 《Peptides》2000,21(6):793-801
Hypothalamic neuropeptides play critical roles in the regulation of feeding behavior and body weight (BW). Disruption of signaling in the ventromedial nucleus by microinjection of the neurotoxin, colchicine (COL), produces transient hyperphagia with corresponding BW gain lasting for 4 days. Because the melanocortin system exerts an inhibitory control on food intake, we hypothesized that hyperphagia in COL-treated rats is due to decreased melanocortin-induced restraint on feeding. Melanocortin restraint is exerted through alpha-melanocortin-stimulating hormone derived from proopiomelanocortin (POMC) and is antagonized by agouti-related peptide produced in neurons located in the arcuate nucleus (ARC). COL (4 microg/0.5 microl saline) or saline was microinjected bilaterally into the ventromedial nucleus of adult male rats. In conjunction with BW gain, blood leptin levels were elevated, whereas POMC mRNA in the ARC was significantly decreased in COL-injected rats. Levels of alpha-melanocortin-stimulating hormone were also decreased in the micropunched paraventricular nucleus, dorsomedial nucleus, and perifornical hypothalamus, sites implicated in the control of food intake. That diminution in melanocortin signaling underlies hyperphagia was supported by the observation that intracerebroventricular injection of the MC3/MC4 melanocortin receptor agonist, MTII, prevented the hyperphagia and BW gain. Surprisingly, however, mRNA levels of the orexigenic peptide agouti-related peptide in the ARC were decreased perhaps due to the action of elevated leptin. These results show that transient hyperphagia and BW gain induced by disruption of signaling in the ventromedial nucleus results from two neurochemical rearrangements: development of leptin resistance in POMC neurons and diminution in melanocortin signaling as reflected by decreased POMC gene expression in the ARC and decreased availability of alpha-melanocortin-stimulating hormone for release in feeding relevant sites.  相似文献   

11.
Schuhler S  Ebling FJ 《Peptides》2006,27(2):301-309
Siberian hamsters express photoperiod-regulated seasonal cycles of body weight and food intake, providing an opportunity to study the role of melanocortin systems in regulating long-term adaptive changes in energy metabolism. These hamsters accumulate intraperitoneal fat reserves when kept in long summer photoperiods, but show a profound long-term decrease in food intake and body weight when exposed to a short winter photoperiod. Icv administration of a MC3/4-R agonist (MTII) potently suppresses food intake in hamsters in both the obese and lean state, indicating the potential for melanocortin systems to regulate energy metabolism in the hypothalamus of the Siberian hamster. Icv treatment with the melanocortin antagonist SHU9119 increases food intake in both seasonal states. Moreover, hamsters bearing neurotoxic lesions, which destroy the majority of POMC expressing neurons in the arcuate nucleus are still able to show seasonal regulation of body weight. These studies in a seasonal model substantiate the view that endogenous melanocortin systems exert a tonic inhibition of food intake in mammals. The observations that this melanocortin tone occurs to a similar extent in both an anabolic state induced by a long day photoperiod, and in a catabolic state induced by a short day photoperiod, suggests that alterations in endogenous melanocortin tone are not the primary cause of the lipolysis, weight-loss and hypophagia which characterize the establishment of the short day-induced overwintering state.  相似文献   

12.
13.
《Hormones and behavior》2008,53(5):612-620
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

14.
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

15.
Joppa MA  Ling N  Chen C  Gogas KR  Foster AC  Markison S 《Peptides》2005,26(11):2294-2301
We investigated the effect of melanocortin 4 receptor (MC4) antagonists on food intake in mice. Food intake during the light phase was significantly increased by ICV administration of mixed MC3/MC4 antagonists (AgRP and SHU9119) or MC4 selective antagonist peptide [(Cyclo (1-5)[Suc-D-Nal-Arg-Trp-Lys]NH2] (MBP10) and the small molecule antagonists THP and NBI-30. Both mixed and selective antagonists significantly reversed anorexia induced by ICV administration of the MC4 agonist (c (1-6) HfRWK-NH2) and the cytokine IL-1beta. These findings provide pharmacological evidence that the MC4 receptor mediates the effects of melanocortin agonists and antagonists on food intake in mice, and support the idea that selective small molecule MC4 antagonists may be useful as therapeutics for cachexia.  相似文献   

16.
It is known that, in rats, central and peripheral ghrelin increases food intake mainly through activation of neuropeptide Y (NPY) neurons. In contrast, intracerebroventricular (ICV) injection of ghrelin inhibits food intake in neonatal chicks. We examined the mechanism governing this inhibitory effect in chicks. The ICV injection of ghrelin or corticotropin-releasing factor (CRF), which also inhibits feeding and causes hyperactivity in chicks. Thus, we examined the interaction of ghrelin with CRF and the hypothalamo-pituitary-adrenal (HPA) axis. The ICV injection of ghrelin increased plasma corticosterone levels in a dose-dependent or a time-dependent manner. Co-injection of a CRF receptor antagonist, astressin, attenuated ghrelin-induced plasma corticosterone increase and anorexia. In addition, we also investigated the effect of ghrelin on NPY-induced food intake and on expression of hypothalamic NPY mRNA. Co-injection of ghrelin with NPY inhibited NPY-induced increase in food intake, and the ICV injection of ghrelin did not change NPY mRNA expression. These results indicate that central ghrelin does not interact with NPY as seen in rodents, but instead inhibits food intake by interacting with the endogenous CRF and its receptor.  相似文献   

17.
Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.  相似文献   

18.
Overexpression of agouti-related peptide (AgRP), an endogenous melanocortin (MC) 3 and 4 receptor antagonist (MC3/4-R), causes obesity. Exogenous AgRP-(83---132) increases food intake, but its duration and mode of action are unknown. We report herein that doses as low as 10 pmol can have a potent effect on food intake of rats over a 24-h period after intracerebroventricular injection. Additionally, a single third ventricular dose as low as 100 pmol in rats produces a robust increase in food intake that persists for an entire week. AgRP-(83---132) completely blocks the anorectic effect of MTII (MC3/4-R agonist), given simultaneously, consistent with a competitive antagonist action. However, when given 24 h prior to MTII, AgRP-(83---132) is ineffective at reversing the anorectic effects of the agonist. These results support a critical role of MC tone in limiting food intake and indicate that the orexigenic effects of AgRP-(83---132) are initially mediated by competitive antagonism at MC receptors but are sustained by alternate mechanisms.  相似文献   

19.
We identified a novel 36-amino acid neuropeptide in rat brain as an endogenous ligand for the G protein-coupled receptors FM-3/GPR66 and FM-4/TGR-1, which were identified to date as the neuromedin U (NMU) receptors, and designated this peptide neuromedin S (NMS) because it was specifically expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus. NMS shared a C-terminal core structure with NMU. NMS mRNA was highly expressed in the central nervous system, spleen and testis. In rat brain, NMS expression was restricted to the ventrolateral portion of the SCN and has a diurnal peak under light/dark cycling, but remains stable under constant darkness. Intracerebroventricular (ICV) administration of NMS in rats induced nonphotic type phase shifts in the circadian rhythm of locomotor activity. ICV injection of NMS also decreased 12-h food intake during the dark period in rats. This anorexigenic effect was more potent than that observed with the same dose of NMU. ICV administration of NMS increased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus (Arc) and corticotropin-releasing hormone mRNA in the paraventricular nucleus, and induced c-Fos expression in the POMC neurons in the Arc. These findings suggest that NMS is implicated in the regulation of circadian rhythm and feeding behavior.  相似文献   

20.
SB Yang  AC Tien  G Boddupalli  AW Xu  YN Jan  LY Jan 《Neuron》2012,75(3):425-436
The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (K(ATP)) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing?a reduction of food intake and body weight. Conversely, young mice lacking the mTOR-negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity. VIDEO ABSTRACT:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号