首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale-free structure prior as an instrument to aid in the identification of candidate hub genes with the potential to direct the hypotheses of molecular biologists, and thus drive future experiments.  相似文献   

2.
A novel approach to generating scale-free network topologies is introduced, based on an existing artificial gene regulatory network model. From this model, different interaction networks can be extracted, based on an activation threshold. By using an evolutionary computation approach, the model is allowed to evolve, in order to reach specific network statistical measures. The results obtained show that, when the model uses a duplication and divergence initialisation, such as seen in nature, the resulting regulation networks not only are closer in topology to scale-free networks, but also require only a few evolutionary cycles to achieve a satisfactory error value.  相似文献   

3.
In this paper, we compile the network of software packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system and use it as an analogy for a gene regulatory network. Using a trace-back algorithm we assemble networks from the pool of packages with both scale-free (real data) and exponential (null model) topologies. We record the maximum number of packages that can be functionally installed in the system (i.e., the active network size). We show that scale-free regulatory networks allow a larger active network size than random ones. This result might have implications for the number of expressed genes at steady state. Small genomes with scale-free regulatory topologies could allow much more expression than large genomes with exponential topologies. This may have implications for the dynamics, robustness and evolution of genomes.  相似文献   

4.
Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.  相似文献   

5.
Networks exhibiting “accelerating” growth have total link numbers growing faster than linearly with network size and either reach a limit or exhibit graduated transitions from non-stationary-to-stationary statistics and from random to scale-free to regular statistics as the network size grows. However, if for any reason the network cannot tolerate such gross structural changes then accelerating networks are constrained to have sizes below some critical value. This is of interest as the regulatory gene networks of single-celled prokaryotes are characterized by an accelerating quadratic growth and are size constrained to be less than about 10,000 genes encoded in DNA sequence of less than about 10 megabases. This paper presents a probabilistic accelerating network model for prokaryotic gene regulation which closely matches observed statistics by employing two classes of network nodes (regulatory and non-regulatory) and directed links whose inbound heads are exponentially distributed over all nodes and whose outbound tails are preferentially attached to regulatory nodes and described by a scale-free distribution. This model explains the observed quadratic growth in regulator number with gene number and predicts an upper prokaryote size limit closely approximating the observed value.  相似文献   

6.
Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks. Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized systems. They represent waves of transition from one stable state into another, spreading over the entire network. The fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences. An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field theory for stationary patterns is constructed.  相似文献   

7.
The manipulation of organisms using combinations of gene knockout, RNAi and drug interaction experiments can be used to reveal regulatory interactions between genes. Several algorithms have been proposed that try to reconstruct the underlying regulatory networks from gene expression data sets arising from such experiments. Often these approaches assume that each gene has approximately the same number of interactions within the network, and the methods rely on prior knowledge, or the investigator's best guess, of the average network connectivity. Recent evidence points to scale-free properties in biological networks, however, where network connectivity follows a power-law distribution. For scale-free networks, the average number of regulatory interactions per gene does not satisfactorily characterise the network. With this in mind, a new reverse engineering approach is introduced that does not require prior knowledge of network connectivity and its performance is compared with other published algorithms using simulated gene expression data with biologically relevant network structures. Because this new approach does not make any assumptions about the distribution of network connections, it is suitable for application to scale-free networks.  相似文献   

8.
9.
Genetic drift in finite populations ultimately leads to the loss of genetic variation. This paper examines the rate of neutral gene loss for a range of population structures defined by a graph. We show that, where individuals reside at fixed points on an undirected graph with equal degree nodes, the mean time to loss differs from the panmictic value by a positive additive term that depends on the number of individuals (not genes) in the population. The effect of these spatial structures is to slow the time to fixation by an amount that depends on the way individuals are distributed, rather than changing the apparent number of genes available to be sampled. This relationship breaks down, however, for a broad class of spatial structures such as random, small-world and scale-free networks. For the latter structures there is a counter-intuitive acceleration of fixation proportional to the level of ploidy.  相似文献   

10.
《Ecological Complexity》2005,2(3):287-299
Individuals in a population susceptible to a disease may be represented as vertices in a network, with the edges that connect vertices representing social and/or spatial contact between individuals. Networks, which explicitly included six different patterns of connection between vertices, were created. Both scale-free networks and random graphs showed a different response in path level to increasing levels of clustering than regular lattices. Clustering promoted short path lengths in all network types, but randomly assembled networks displayed a logarithmic relationship between degree and path length; whereas this response was linear in regular lattices. In all cases, small-world models, generated by rewiring the connections of a regular lattice, displayed properties, which spanned the gap between random and regular networks.Simulation of a disease in these networks showed a strong response to connectance pattern, even when the number of edges and vertices were approximately equal. Epidemic spread was fastest, and reached the largest size, in scale-free networks, then in random graphs. Regular lattices were the slowest to be infected, and rewired lattices were intermediate between these two extremes. Scale-free networks displayed the capacity to produce an epidemic even at a likelihood of infection, which was too low to produce an epidemic for the other network types. The interaction between the statistical properties of the network and the results of epidemic spread provides a useful tool for assessing the risk of disease spread in more realistic networks.  相似文献   

11.
Biological network comparison using graphlet degree distribution   总被引:1,自引:0,他引:1  
MOTIVATION: Analogous to biological sequence comparison, comparing cellular networks is an important problem that could provide insight into biological understanding and therapeutics. For technical reasons, comparing large networks is computationally infeasible, and thus heuristics, such as the degree distribution, clustering coefficient, diameter, and relative graphlet frequency distribution have been sought. It is easy to demonstrate that two networks are different by simply showing a short list of properties in which they differ. It is much harder to show that two networks are similar, as it requires demonstrating their similarity in all of their exponentially many properties. Clearly, it is computationally prohibitive to analyze all network properties, but the larger the number of constraints we impose in determining network similarity, the more likely it is that the networks will truly be similar. RESULTS: We introduce a new systematic measure of a network's local structure that imposes a large number of similarity constraints on networks being compared. In particular, we generalize the degree distribution, which measures the number of nodes 'touching' k edges, into distributions measuring the number of nodes 'touching' k graphlets, where graphlets are small connected non-isomorphic subgraphs of a large network. Our new measure of network local structure consists of 73 graphlet degree distributions of graphlets with 2-5 nodes, but it is easily extendible to a greater number of constraints (i.e. graphlets), if necessary, and the extensions are limited only by the available CPU. Furthermore, we show a way to combine the 73 graphlet degree distributions into a network 'agreement' measure which is a number between 0 and 1, where 1 means that networks have identical distributions and 0 means that they are far apart. Based on this new network agreement measure, we show that almost all of the 14 eukaryotic PPI networks, including human, resulting from various high-throughput experimental techniques, as well as from curated databases, are better modeled by geometric random graphs than by Erd?s-Rény, random scale-free, or Barabási-Albert scale-free networks. AVAILABILITY: Software executables are available upon request.  相似文献   

12.
For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in random and scale-free Boolean networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems’ stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.  相似文献   

13.
Malcom JW 《PloS one》2011,6(4):e14747
The environments in which organisms live and reproduce are rarely static, and as the environment changes, populations must evolve so that phenotypes match the challenges presented. The quantitative traits that map to environmental variables are underlain by hundreds or thousands of interacting genes whose allele frequencies and epistatic relationships must change appropriately for adaptation to occur. Extending an earlier model in which individuals possess an ecologically-critical trait encoded by gene networks of 16 to 256 genes and random or scale-free topology, I test the hypothesis that smaller, scale-free networks permit longer persistence times in a constantly-changing environment. Genetic architecture interacting with the rate of environmental change accounts for 78% of the variance in trait heritability and 66% of the variance in population persistence times. When the rate of environmental change is high, the relationship between network size and heritability is apparent, with smaller and scale-free networks conferring a distinct advantage for persistence time. However, when the rate of environmental change is very slow, the relationship between network size and heritability disappears and populations persist the duration of the simulations, without regard to genetic architecture. These results provide a link between genes and population dynamics that may be tested as the -omics and bioinformatics fields mature, and as we are able to determine the genetic basis of ecologically-relevant quantitative traits.  相似文献   

14.
Conservation and coevolution in the scale-free human gene coexpression network   总被引:12,自引:0,他引:12  
The role of natural selection in biology is well appreciated. Recently, however, a critical role for physical principles of network self-organization in biological systems has been revealed. Here, we employ a systems level view of genome-scale sequence and expression data to examine the interplay between these two sources of order, natural selection and physical self-organization, in the evolution of human gene regulation. The topology of a human gene coexpression network, derived from tissue-specific expression profiles, shows scale-free properties that imply evolutionary self-organization via preferential node attachment. Genes with numerous coexpressed partners (the hubs of the coexpression network) evolve more slowly on average than genes with fewer coexpressed partners, and genes that are coexpressed show similar rates of evolution. Thus, the strength of selective constraints on gene sequences is affected by the topology of the gene coexpression network. This connection is strong for the coding regions and 3' untranslated regions (UTRs), but the 5' UTRs appear to evolve under a different regime. Surprisingly, we found no connection between the rate of gene sequence divergence and the extent of gene expression profile divergence between human and mouse. This suggests that distinct modes of natural selection might govern sequence versus expression divergence, and we propose a model, based on rapid, adaptation-driven divergence and convergent evolution of gene expression patterns, for how natural selection could influence gene expression divergence.  相似文献   

15.
16.
In this article, the performance of a hybrid artificial neural network (i.e. scale-free and small-world) was analyzed and its learning curve compared to three other topologies: random, scale-free and small-world, as well as to the chemotaxis neural network of the nematode Caenorhabditis Elegans. One hundred equivalent networks (same number of vertices and average degree) for each topology were generated and each was trained for one thousand epochs. After comparing the mean learning curves of each network topology with the C. elegans neural network, we found that the networks that exhibited preferential attachment exhibited the best learning curves.  相似文献   

17.
We present a simple model of genetic regulatory networks in which regulatory connections among genes are mediated by a limited number of signaling molecules. Each gene in our model produces (publishes) a single gene product, which regulates the expression of other genes by binding to regulatory regions that correspond (subscribe) to that product. We explore the consequences of this publish-subscribe model of regulation for the properties of single networks and for the evolution of populations of networks. Degree distributions of randomly constructed networks, particularly multimodal in-degree distributions, which depend on the length of the regulatory sequences and the number of possible gene products, differed from simpler Boolean NK models. In simulated evolution of populations of networks, single mutations in regulatory or coding regions resulted in multiple changes in regulatory connections among genes, or alternatively in neutral change that had no effect on phenotype. This resulted in remarkable evolvability in both number and length of attractors, leading to evolved networks far beyond the expectation of these measures based on random distributions. Surprisingly, this rapid evolution was not accompanied by changes in degree distribution; degree distribution in the evolved networks was not substantially different from that of randomly generated networks. The publish-subscribe model also allows exogenous gene products to create an environment, which may be noisy or stable, in which dynamic behavior occurs. In simulations, networks were able to evolve moderate levels of both mutational and environmental robustness.  相似文献   

18.
A growing number of studies are investigating the effect of contact structure on the dynamics of epidemics in large-scale complex networks. Whether findings thus obtained apply also to networks of small size, and thus to many real-world biological applications, is still an open question. We use numerical simulations of disease spread in directed networks of 100 individual nodes with a constant number of links. We show that, no matter the type of network structure (local, small-world, random and scale-free), there is a linear threshold determined by the probability of infection transmission between connected nodes and the probability of infection persistence in an infected node. The threshold is significantly lower for scale-free networks compared to local, random and small-world ones only if super-connected nodes have a higher number of links both to and from other nodes. The starting point, the node at which the epidemic starts, does not affect the threshold conditions, but has a marked influence on the final size of the epidemic in all kinds of network. There is evidence that contact structure has an influence on the average final size of an epidemic across all starting nodes, with significantly lower values in scale-free networks at equilibrium. Simulations in scale-free networks show a distinctive time-series pattern, which, if found in a real epidemic, can be used to infer the underlying network structure. The findings have relevance also for meta-population ecology and species conservation.  相似文献   

19.
MOTIVATION: Many aging genes have been found from unbiased screens in model organisms. Genetic interventions promoting longevity are usually quantitative, while in many other biological fields (e.g. development) null mutations alone have been very informative. Therefore, in the case of aging the task is larger and the need for a more efficient genetic search strategy is especially strong. RESULTS: The topology of genetic and metabolic networks is organized according to a scale-free distribution, in which hubs with large numbers of links are present. We have developed a computational model of aging genes as the hubs of biological networks. The computational model shows that, after generalized damage, the function of a network with scale-free topology can be significantly restored by a limited intervention on the hubs. Analyses of data on aging genes and biological networks support the applicability of the model to biological aging. The model also might explain several of the properties of aging genes, including the high degree of conservation across different species. The model suggests that aging genes tend to have a higher number of connections and therefore supports a strategy, based on connectivity, for prioritizing what might otherwise be a random search for aging genes.  相似文献   

20.
The vast majority (>95%) of single-gene mutations in yeast affect not only the expression of the mutant gene, but also the expression of many other genes. These data suggest the presence of a previously uncharacterized "gene expression network"--a set of interactions between genes which dictate gene expression in the native cell environment. Here, we quantitatively analyze the gene expression network revealed by microarray expression data from 273 different yeast gene deletion mutants.(1) We find that gene expression interactions form a robust, error-tolerant "scale-free" network, similar to metabolic pathways(2) and artificial networks such as power grids and the internet.(3-5) Because the connectivity between genes in the gene expression network is unevenly distributed, a scale-free organization helps make organisms resistant to the deleterious effects of mutation, and is thus highly adaptive. The existence of a gene expression network poses practical considerations for the study of gene function, since most mutant phenotypes are the result of changes in the expression of many genes. Using principles of scale-free network topology, we propose that fragmenting the gene expression network via "genome-engineering" may be a viable and practical approach to isolating gene function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号