首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postsynaptic Ca2+ changes are involved in control of cellular excitability and induction of synaptic long-term changes. We monitored Ca2+ changes in dendrites and spines during synaptic and direct stimulation using high resolution microfluorometry of fura-2 injected into CA3 pyramidal neurons in guinea pig hippocampal slice. When driven by current injection from an intracellular electrode or with synaptic stimulation, postsynaptic Ca2+ accumulations were highest in the proximal dendrites with a pronounced fall-off towards the soma and some fall-off towards more distal dendrites. Muscarinic activation by low concentrations of carbachol strongly increased intradendritic Ca2+ accumulation during directly-evoked repetitive firing. This enhancement occurred in large part because muscarinic activation suppressed the normal Ca(2+)-dependent activation of K-channels that mediates adaptation of firing. Repetitive firing of cholinergic fibers in the slice reproduced the effects of carbachol. Inhibition of acetylcholine-esterase activity by eserine enhanced the effects of repetitive stimulation of chlolinergic fibers. All effects were reversible and were blocked by the muscarinic antagonist atropine. Ca2+ accumulations in postsynaptic spines might be the basis of specificity of synaptic plasticity. With selective stimulation of few associative/comissural fibers, Ca2+ accumulated in single postsynaptic spines but not in the parent dendrite. With strong stimulation, dendrite levels also increased but spine levels were considerably higher. The NMDA-receptor antagonist AP-5 blocked Ca(2+)-peaks in spines, but left Ca2+ changes in dendrite shafts largely unaffected. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, developed with repeated stimulation. Our results demonstrate a spine entity that can act independent from the dendrite with respect to Ca(2+)-dependent processes. Muscarinic augmentation of dendritic Ca2+ levels might reduce diffusional loss of Ca2+ from hot spines into the parent dendrite, thus supporting cooperativity and associativity of synaptic plasticity.  相似文献   

2.
3.
Dendritic spines are cellular microcompartments that are isolated from their parent dendrites and neighboring spines. Recently, imaging studies of spine Ca(2+) dynamics have revealed that Ca(2+) can enter spines through voltage-sensitive and ligand-activated channels, as well as through Ca(2+) release from intracellular stores. Relationships between spine Ca(2+) signals and induction of various forms of synaptic plasticity are beginning to be elucidated. Measurements of spine Ca(2+) concentration are also being used to probe the properties of single synapses and even individual calcium channels in their native environment.  相似文献   

4.
Na(+)-Ca(2+) exchanger (NCX) controls cytosolic Ca(2+) and Na(+) concentrations ([Ca(2+)](i) and [Na(+)](i)) in eukaryotic cells. Here we investigated by immunocytochemistry the cellular and subcellular localization of the three known NCX isoforms, NCX1, NCX2 and NCX3, in adult rat neocortex and hippocampus. NCX1-3 were widely expressed in both brain areas: NCX1 immunoreactivity (ir) was exclusively associated to neuropilar puncta, while NCX2-3 were also detected in neuronal somata and dendrites. NCX1-3 ir was often identified around blood vessels. In both neocortex and hippocampus, all NCX isoforms were prominently expressed in dendrites and dendritic spines contacted by asymmetric axon terminals, whereas they were poorly expressed in presynaptic boutons. In addition, NCX1-3 ir was detected in astrocytes, notably in distal processes ensheathing excitatory synapses. All NCXs were expressed in perivascular astrocytic endfeet and endothelial cells. The robust expression of NCX1-3 in heterogeneous cell types in the brain in situ emphasizes their role in handling Ca(2+) and Na(+) in both excitable and non-excitable cells. Perisynaptic localization of NCX1-3 in dendrites and spines indicates that all isoforms are favourably located for buffering [Ca(2+)](i) in excitatory postsynaptic sites. NCX1-3 expressed in perisynaptic glial processes may participate in shaping astrocytic [Ca(2+)](i) transients evoked by ongoing synaptic activity.  相似文献   

5.
Camiré O  Topolnik L 《Cell calcium》2012,52(5):339-346
Information processing within neural circuits depends largely on the dynamic interactions between the principal cells and inhibitory interneurons. It is further determined by the efficacy of synaptic transmission between individual circuit elements, which is in turn tightly regulated by changes in network activity to allow for numerous adaptations to occur at a single synapse. Intracellular calcium (Ca(2+)) is a crucial factor in the regulation of synaptic efficacy in neuronal networks. Evidence from high-resolution imaging studies has revealed the intricacies of how Ca(2+) signalling is organised in the dendrites of different cell types. Inhibitory interneurons exhibit a variety of postsynaptic Ca(2+) mechanisms, which are recruited by distinct activity patterns and are responsible for the formation of functionally segregated dendritic Ca(2+) microdomains. Furthermore, postsynaptic Ca(2+) signals in these cells not only contribute to the induction of synaptic plasticity but also may themselves undergo different forms of plastic modifications, depending on the activity level. This compartmentalised regulation of postsynaptic Ca(2+) signalling may have a significant impact on the induction of synaptic plasticity and on single-interneuron and network computations.  相似文献   

6.
Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid β (Aβ). Besides Aβ generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca(2+) homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner.  相似文献   

7.
In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits   总被引:4,自引:0,他引:4  
A central question about the brain is how information is processed by large populations of neurons embedded in intricate local networks. Answering this question requires not only monitoring functional dynamics of many neurons simultaneously, but also interpreting such activity patterns in the context of neuronal circuitry. Here, we introduce a versatile approach for loading Ca(2+) indicators in vivo by local electroporation. With this method, Ca(2+) imaging can be performed both at neuron population level and with exquisite subcellular resolution down to dendritic spines and axon boutons. This enabled mitral cell odor-evoked ensemble activity to be analyzed simultaneously with revealing their specific connectivity to different glomeruli. Colabeling of Purkinje cell dendrites and intersecting parallel fibers allowed Ca(2+) imaging of both presynaptic boutons and postsynaptic dendrites. This approach thus provides an unprecedented capability for in vivo visualizing active cell ensembles and tracing their underlying local neuronal circuits.  相似文献   

8.
Hippocampal interneurons consist of functionally diverse cell types, most of them target the dendrites or perisomatic region of pyramidal cells with a few exceptions, like the calretinin-containing cells in the rat: they selectively innervate other interneurons. However, no electron microscopic data are available about the synaptic connections of calretinin-immunoreactive neurons in the human hippocampus. We aimed to provide these data to establish whether interneuron-selective interneurons indeed represent an essential feature of hippocampal circuits across distant species. Two types of calretinin-immunostained terminals were found in the CA1 region: one of them presumably derived from the thalamic reuniens nucleus, and established asymmetric synapses on dendrites and spines. The other type originating from local interneurons formed symmetric synapses on both pyramidal and interneuron dendrites. Distribution of postsynaptic targets showed that 26.8% of the targets were CR-positive interneuron dendrites, and 25.2% proved to be proximal pyramidal dendrites. CR-negative interneuron dendrites were also contacted (12.4%). Small caliber postsynaptic dendrites were not classified (28%). Somata were rarely contacted (7.6%). The present data suggest that calretinin-positive boutons do show a preference for other interneurons, but a considerable proportion of the targets are pyramidal cells. We propose that interneuron-selective inhibitory cells exist in the human Ammon's horn, and boutons innervating pyramidal cells derive from another cell type that might not exist in rodents.  相似文献   

9.
Long-term plasticity typically relies on postsynaptic NMDA receptors to detect the coincidence of pre- and postsynaptic activity. Recent studies, however, have revealed forms of plasticity that depend on coincidence detection by presynaptic NMDA receptors. In the amygdala, cortical afferent associative presynaptic long-term potentiation (LTP) requires activation of presynaptic NMDA receptors by simultaneous thalamic and cortical afferents. Surprisingly, both types of afferent can also undergo postsynaptically induced NMDA-receptor-dependent LTP. In the neocortex, spike-timing-dependent long-term depression (LTD) requires simultaneous activation of presynaptic NMDA autoreceptors and retrograde signalling by endocannabinoids. In cerebellar LTD, presynaptic NMDA receptor activation suggests that similar presynaptic mechanisms may exist. Recent studies also indicate the existence of presynaptic coincidence detection that is independent of NMDA receptors, suggesting that such mechanisms have a widespread role in plasticity.  相似文献   

10.
Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.  相似文献   

11.
Sabatini BL  Oertner TG  Svoboda K 《Neuron》2002,33(3):439-452
Spine Ca(2+) is critical for the induction of synaptic plasticity, but the factors that control Ca(2+) handling in dendritic spines under physiological conditions are largely unknown. We studied [Ca(2+)] signaling in dendritic spines of CA1 pyramidal neurons and find that spines are specialized structures with low endogenous Ca(2+) buffer capacity that allows large and extremely rapid [Ca(2+)] changes. Under physiological conditions, Ca(2+) diffusion across the spine neck is negligible, and the spine head functions as a separate compartment on long time scales, allowing localized Ca(2+) buildup during trains of synaptic stimuli. Furthermore, the kinetics of Ca(2+) sources governs the time course of [Ca(2+)] signals and may explain the selective activation of long-term synaptic potentiation (LTP) and long-term depression (LTD) by NMDA-R-mediated synaptic Ca(2+).  相似文献   

12.
Synapses may undergo long-term increases or decreases in synaptic strength dependent on critical differences in the timing between pre-and postsynaptic activity. Such spike-timing-dependent plasticity (STDP) follows rules that govern how patterns of neural activity induce changes in synaptic strength. Synaptic plasticity in the dorsal cochlear nucleus (DCN) follows Hebbian and anti-Hebbian patterns in a cell-specific manner. Here we show that these opposing responses to synaptic activity result from differential expression of two signaling pathways. Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling underlies Hebbian postsynaptic LTP in principal cells. By contrast, in interneurons, a temporally precise anti-Hebbian synaptic spike-timing rule results from the combined effects of postsynaptic CaMKII-dependent LTP and endocannabinoid-dependent presynaptic LTD. Cell specificity in the circuit arises from selective targeting of presynaptic CB1 receptors in different axonal terminals. Hence, pre- and postsynaptic sites of expression determine both the sign and timing requirements of long-term plasticity in interneurons.  相似文献   

13.
Calcium signals in long-term potentiation and long-term depression   总被引:6,自引:0,他引:6  
We describe postsynaptic Ca2+ signals that subserve induction of two forms of neuronal plasticity, long-term potentiation (LTP) and long-term depression (LTD), in rat hippocampal neurons. The common induction protocol for LTP, a 1-s, 50-Hz tetanus, generates Ca2+ increases of about 50-Hz in dendritic spines of CA1 neurons. These very large increases, measured using a low affinity indicator (Mg fura 5), were found only in the spines and tertiary dendrites, and were dependent upon influx through N-methyl-D-aspartate (NMDA) gated channels. High affinity Ca2+ indicators (e.g., fura 2) are unable to demonstrate these events. In acute slices, neighboring dendritic branches often showed very different responses to a tetanus, and in some instances, neighboring spines on the same dendrite responded differently. LTD in mature CA1 neurons was induced by a low frequency stimulus protocol (2 Hz, 900 pulses), in the presence of GABA- and NMDA-receptor blockers. This LTD protocol produced dendritic Ca2+ increases of <1 microM. Duration of the Ca2+ increase was approximately 30 s and was due to voltage-gated Ca2+ influx. Finally, the ability of synaptically addressed Ca2+ stores to release Ca2+ was studied in CA3 neurons and was found to require immediate preloading and high intensity presynaptic stimulation, conditions unlike normal LTP-LTD protocols.  相似文献   

14.
Endogenous cannabinoids (endocannabinoids) serve as retrograde messengers at synapses in various regions of the brain. They are released from postsynaptic neurons and cause transient and long-lasting reduction of neurotransmitter release through activation of presynaptic cannabinoid receptors. Endocannabinoid release is induced either by increased postsynaptic Ca(2+) levels or by activation of G(q/11)-coupled receptors. When these two stimuli coincide, endocannabinoid release is markedly enhanced, which is attributed to the Ca(2+) dependency of phospholipase Cbeta (PLCbeta). This Ca(2+)-assisted receptor-driven endocannabinoid release is suggested to participate in various forms of synaptic plasticity, including short-term associative plasticity in the cerebellum and spike-timing-dependent long-term depression in the somatosensory cortex. In these forms of plasticity, PLCbeta seems to function as a coincident detector of presynaptic and postsynaptic activities.  相似文献   

15.
Structural plasticity of axon terminals in the adult   总被引:1,自引:0,他引:1  
There is now conclusive evidence for widespread ongoing structural plasticity of presynaptic boutons and axon side-branches in the adult brain. The plasticity complements that of postsynaptic spines, but axonal plasticity samples larger volumes of neuropil, and has a larger impact on circuit remodeling. Axons from distinct neurons exhibit unique ratios of stable (t1/2>9 months) and dynamic (t1/2 5-20 days) boutons, which persist as spatially intermingled subgroups along terminal arbors. In addition, phases of side-branch dynamics mediate larger scale remodeling guided by synaptogenesis. The plasticity is most pronounced during critical periods; its patterns and outcome are controlled by Hebbian mechanisms and intrinsic neuronal factors. Novel experience, skill learning, life-style, and age can persistently modify local circuit structure through axonal structural plasticity.  相似文献   

16.
Ryanodine receptor (RyR)-mediated Ca(2+) dysregulation is associated with Alzheimer's disease (AD) neuropathology. Using 2-photon Ca(2+) imaging and patch clamp recordings in brain slice preparations from young 3xTg-AD and NonTg control mice, we recently demonstrated that RyR-mediated Ca(2+) -induced Ca(2+) release (CICR) is substantially increased within dendrites from AD neurons, such that synaptic stimulation alone is sufficient to generate aberrant CICR. We also observed supra-additive Ca(2+) release upon coincident RyR activation with synaptic stimulation in 3xTg-AD mice. Here, we describe an additional observed phenomenon: generation of patterned Ca(2+) oscillations in the spines and dendrites from AD neurons upon coincident RyR and synaptic stimulation. As the temporal entrainment of Ca(2+) signals influences many downstream cellular and synaptic functions, these abnormal oscillatory patterns may be associated with the structural and functional breakdown of synapses in AD.  相似文献   

17.
We combined local photolysis of caged compounds with fluorescence imaging to visualize molecular diffusion within dendrites of cerebellar Purkinje cells. Diffusion of a volume marker, fluorescein dextran, within spiny dendrites was remarkably slow in comparison to its diffusion in smooth dendrites. Computer simulations indicate that this retardation is due to a transient trapping of molecules within dendritic spines, yielding anomalous diffusion. We considered the influence of spine trapping on the diffusion of calcium ions (Ca(2+)) and inositol-1,4,5-triphospate (IP(3)), two synaptic second messengers. Diffusion of IP(3) was strongly influenced by the presence of dendritic spines, while Ca(2+) was removed so rapidly that it could not diffuse far enough to be trapped. We conclude that an important function of dendritic spines may be to trap chemical signals and thereby create slowed anomalous diffusion within dendrites.  相似文献   

18.
We previously showed that the time-dependent intensification ("incubation") of cue-induced cocaine seeking after withdrawal from extended-access cocaine self-administration is accompanied by accumulation of Ca(2+)-permeable AMPA receptors (CP-AMPARs) in the rat nucleus accumbens (NAc). These results suggest an enduring change in Ca(2+) signaling in NAc dendritic spines. The purpose of the present study was to determine if Ca(2+) signaling via NMDA receptors (NMDARs) is also altered after incubation. Rats self-administered cocaine or saline for 10 days (6 h/day). After 45-47 days of withdrawal, NMDAR-mediated Ca(2+) entry elicited by glutamate uncaging was monitored in individual NAc dendritic spines. NMDAR currents were simultaneously recorded using whole cell patch clamp recordings. We also measured NMDAR subunit levels in a postsynaptic density (PSD) fraction prepared from the NAc of identically treated rats. NMDAR currents did not differ between groups, but a smaller percentage of spines in the cocaine group responded to glutamate uncaging with NMDAR-mediated Ca(2+) entry. No significant group differences in NMDAR subunit protein levels were found. The decrease in the proportion of spines showing NMDAR-mediated Ca(2+) entry suggests that NAc neurons in the cocaine group contain more spines which lack NMDARs (non-responding spines). The fact that cocaine and saline groups did not differ in NMDAR currents or NMDAR subunit levels suggests that the number of NMDARs on responding spines is not significantly altered by cocaine exposure. These findings are discussed in light of increases in dendritic spine density in the NAc observed after withdrawal from repeated cocaine exposure.  相似文献   

19.
The cellular populations present in dorsomedial cortex in the snakes Constrictor constrictor, Natrix sipendon and Thamnophis sirtalis are described at the light microscopic level using Nissl and Golgi preparations as well as at the ultrastructural level. This area plays a central role in cortical organization in snakes by participating in major commissural and association projections. Systematic analyses of Golgi preparations indicate that five populations of neurons are present in dorsomedial area and have a preferential laminar distribution. Layer 1 stellate cells have somata positioned in the center of the outermost cortical layer, layer 1. Their dendrites are confined to this layer. Double pyramidal cells have their somata loosely packed in layer 2. Their dendrites bear a moderate population of spines, ascending through layer 1 to the pial surface and descending partially through layer 3. Some double pyramidal cells have somata displaced downwards into the upper third of layer 3. These neurons closely resemble the layer 2 double pyramidal cells. Layer 3 stellate cells have somata positioned in the middle third of layer 3. Their dendrites extend in all directions throughout layer 3 and through layer 2 into layer 1. Finally, horizontal cells have their somata positioned deep in layer 3, near the ventricle, and dendrites aligned concentric with the ventricle. Comparison of the organization of the known afferents to dorsomedial area with the distribution of the five cell types suggests that the laminations of both afferent fibres and dorsomedial neurons places specific neuronal populations in synaptic contact with specific sets of afferents.  相似文献   

20.
Emptage NJ  Reid CA  Fine A  Bliss TV 《Neuron》2003,38(5):797-804
The mechanisms by which long-term potentiation (LTP) is expressed are controversial, with evidence for both presynaptic and postsynaptic involvement. We have used confocal microscopy and Ca(2+)-sensitive dyes to study LTP at individual visualized synapses. Synaptically evoked Ca(2+) transients were imaged in distal dendritic spines of pyramidal cells in cultured hippocampal slices, before and after the induction of LTP. At most synapses, from as early as 10 min to at least 60 min after induction, LTP was associated with an increase in the probability of a single stimulus evoking a postsynaptic Ca(2+) response. These observations provide compelling evidence of a presynaptic component to the expression of early LTP at Schaffer-associational synapses. In most cases, the store-dependent evoked Ca(2+) transient in the spine was also increased after induction, a novel postsynaptic aspect of LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号