首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcineurin is a phosphoprotein phosphatase that channels intracellular Ca signals into multiple biological pathways. Calcineurin is known to interact directly with its substrate nuclear factor of activated T cells (NFAT or NFATc), with other substrates, and with several targeting and scaffold proteins including AKAP79 and Cabin1/cain. The calcineurin-NFAT interaction depends on recognition of a PxIxIT sequence motif present in NFAT-family proteins and in certain other calcineurin-interacting proteins. Here, we define the structural basis for the interaction of calcineurin with NFAT and with other proteins possessing the PxIxIT motif. The calcineurin-PxIxIT contact has a direct parallel in the contact of protein phosphatase 1 with its regulatory proteins, suggesting that the evolution of these related phosphatases involved local remodelling of an ancestral docking site.  相似文献   

2.
3.
4.
Mitogen-activated protein kinases (MAPKs) mediate cellular responses to a wide variety of extracellular stimuli. MAPK signal transduction cascades are tightly regulated, and individual MAPKs display exquisite specificity in recognition of their target substrates. All MAPK family members share a common phosphorylation site motif, raising questions as to how substrate specificity is achieved. Here we describe a peptide library screen to identify sequence requirements of the DEF site (docking site for ERK FXF), a docking motif separate from the phosphorylation site. We show that MAPK isoforms recognize DEF sites with unique sequences and identify two key residues on the MAPK that largely dictate sequence specificity. Based on these observations and computational docking studies, we propose a revised model for MAPK interaction with substrates containing DEF sites. Variations in DEF site sequence requirements provide one possible mechanism for encoding complex target specificity among MAPK isoforms.  相似文献   

5.
Calcineurin is a serine/threonine phosphatase originally involved in the immune response but is also known for its role as a central mediator in various non-immunological intracellular signals. The nuclear factor of activated T cell (NFAT) proteins are the most widely described substrates of calcineurin, but ongoing work has uncovered other substrates among which are the cytoskeleton organizing proteins (i.e. cofilin, synaptopodin, WAVE-1). Control over cytoskeletal proteins is of outmost interest because the phenotypic properties of cells are dependent on cytoskeleton architecture integrity, while rearrangements of the cytoskeleton are implicated in both physiological and pathological processes. Previous works investigating the role of calcineurin on the cytoskeleton have focused on neurite elongation, myocyte hypertrophic response and recently in kidney cells structure. Nuclear factor of activated T cell activation is expectedly identified in the signalling pathways for calcineurin-induced cytoskeleton organization, however new NFAT-independent pathways have also been uncovered. The aim of this review is to summarize the current knowledge on the effects of calcineurin on cytoskeletal proteins and related intracellular pathways. These newly described properties of calcineurin on cytoskeletal proteins may explain some of the beneficial or deleterious effects observed in kidney cells associated with the use of the calcineurin inhibitors, cyclosporine and tacrolimus.  相似文献   

6.
Replication of the genomic RNA of severe acute respiratory syndrome coronavirus (SARS-CoV) is mediated by replicase polyproteins that are processed by two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro). Previously, we showed that SARS-CoV PLpro processes the replicase polyprotein at three conserved cleavage sites. Here, we report the identification and characterization of a 316-amino-acid catalytic core domain of PLpro that can efficiently cleave replicase substrates in trans-cleavage assays and peptide substrates in fluorescent resonance energy transfer-based protease assays. We performed bioinformatics analysis on 16 papain-like protease domains from nine different coronaviruses and identified a putative catalytic triad (Cys1651-His1812-Asp1826) and zinc-binding site. Mutagenesis studies revealed that Asp1826 and the four cysteine residues involved in zinc binding are essential for SARS-CoV PLpro activity. Molecular modeling of SARS-CoV PLpro suggested that this catalytic core may also have deubiquitinating activity. We tested this hypothesis by measuring the deubiquitinating activity of PLpro by two independent assays. SARS CoV-PLpro hydrolyzed both diubiquitin and ubiquitin-7-amino-4-methylcoumarin (AMC) substrates, and hydrolysis of ubiquitin-AMC is approximately 180-fold more efficient than hydrolysis of a peptide substrate that mimics the PLpro replicase recognition sequence. To investigate the critical determinants recognized by PLpro, we performed site-directed mutagenesis on the P6 to P2' residues at each of the three PLpro cleavage sites. We found that PLpro recognizes the consensus cleavage sequence LXGG, which is also the consensus sequence recognized by cellular deubiquitinating enzymes. This similarity in the substrate recognition sites should be considered during the development of SARS-CoV PLpro inhibitors.  相似文献   

7.
The two-pore domain K(+) channel, TRESK (TWIK-related spinal cord K(+) channel) is activated in response to the calcium signal by the calcium/calmodulin-dependent protein phosphatase, calcineurin. In the present study we report that calcineurin also interacts with TRESK via an NFAT-like docking site, in addition to its enzymatic action. In its intracellular loop, mouse TRESK possesses the amino acid sequence, PQIVID, which is similar to the calcineurin binding consensus motif, PXIXIT (where X denotes any amino acids), necessary for NFAT (nuclear factor of activated T cells) activation and nuclear translocation. Mutations of the PQIVID sequence of TRESK to PQIVIA, PQIVAD, or PQAVAD increasingly deteriorated the calcium-dependent activation in the listed order and correspondingly reduced the benzocaine sensitivity (a property discriminating activated channels from resting ones), when it was measured after the calcium signal in Xenopus oocytes. Microinjection of VIVIT peptide, designed to inhibit the NFAT-calcineurin interaction specifically, also eliminated TRESK activation. The intracellular loop of TRESK, expressed as a GST fusion protein, bound constitutively active calcineurin in vitro. PQAVAD mutation as well as addition of VIVIT peptide to the reaction abrogated this calcineurin binding. Wild type calcineurin was recruited to GST-TRESK-loop in the presence of calcium and calmodulin. These results indicate that the PQIVID sequence is a docking site for calcineurin, and its occupancy is required for the calcium-dependent regulation of TRESK. Immunosuppressive compounds, developed to target the NFAT binding site of calcineurin, are also expected to interfere with TRESK regulation, in addition to their desired effect on NFAT.  相似文献   

8.
Proteases are of significant importance for the virulence of Staphylococcus aureus. Nevertheless, their subset, the serine protease-like proteins, remains poorly characterized. Here presented is an investigation of SplB protease catalytic activity revealing that the enzyme possesses exquisite specificity and only cleaves efficiently after the sequence Trp-Glu-Leu-Gln. To understand the molecular basis for such selectivity, we solved the three-dimensional structure of SplB to 1.8 Å. Modeling of substrate binding to the protease demonstrated that selectivity relies in part on a canonical specificity pockets-based mechanism. Significantly, the conformation of residues that ordinarily form the oxyanion hole, an essential structural element of the catalytic machinery of serine proteases, is not canonical in the SplB structure. We postulate that within SplB, the oxyanion hole is only formed upon docking of a substrate containing the consensus sequence motif. It is suggested that this unusual activation mechanism is used in parallel with classical determinants to further limit enzyme specificity. Finally, to guide future development, we attempt to point at likely physiological substrates and thus the role of SplB in staphylococcal physiology.  相似文献   

9.
10.
11.
12.
Autoinhibitory domain (AID) of calcineurin (CN) was discovered two decades ago. Fewer investigations are reported to find out shortest possible peptide from the AID for CN inhibition. Hence, this study has focused on screening of nearly 150 peptide fragments derived from the AID using in silico method. Therefore, we have employed docking studies, aiming to analyze the best pose of AID-derived peptides on CN active site. We also analyzed binding free energy (ΔG) of docked complex using molecular mechanics/generalized Born surface area (MM/GBSA). MM/GBSA predicts two short peptides P1 and P2 found to be lowest binding free energy. Two peptides exhibit better binding affinity with CN, suggests that the possible candidates for potential CN inhibition. Further, the stability of the docked complex was analyzed using molecular dynamic (MD) simulation. MD study shows that CNA:P2 is the most stable complex than CN A:P1 and CN A:AID. Besides, we have synthesized and purified P1 and P2 peptides over high performance liquid chromatography (HPLC) found to be 90.31% and 98.93% of purity, respectively. In addition, AID peptides were characterized over mass spectral analysis. Peptides were subjected to CN inhibitory assay using malachite green method. Where, P1 and P2 exhibit CN inhibition better than AID. In particular, shortest peptide P2 shows highest inhibitory activity than AID. Enzyme assay reveals CN inhibitory activity of P2 peptide is consistent within silico results. In silico and in vitro, results corroborated each other to confirm short peptide P2 can be used as a potential CN inhibitor.  相似文献   

13.
The recently described Tat protein translocation system in Escherichia coli recognizes its protein substrates by the consensus twin arginine (SRRXFLK) motif in the signal peptide. The signal sequence of E. coli pre-pro-penicillin amidase bears two arginine residues separated by one aspargine and does not resemble the Tat-targeting motif but can nevertheless target the precursor to the Tat pathway. Mutational studies have shown that the hydrophobic core region acts in synergism with the positive charged N-terminal part of the signal peptide as a Tat recognition signal and contributes to the efficient Tat targeting of the pre-pro-penicillin amidase.  相似文献   

14.
Sister chromatid cohesion is resolved at anaphase onset when separase, a site-specific protease, cleaves the Scc1 subunit of the chromosomal cohesin complex that is responsible for holding sister chromatids together. This mechanism to initiate anaphase is conserved in eukaryotes from budding yeast to man. Budding yeast separase recognizes and cleaves two conserved peptide motifs within Scc1. In addition, separase cleaves a similar motif in the kinetochore and spindle protein Slk19. Separase may cleave further substrate proteins to orchestrate multiple cellular events that take place during anaphase. To investigate substrate recognition by budding yeast separase we analyzed the sequence requirements at one of the Scc1 cleavage site motifs by systematic mutagenesis. We derived a cleavage site consensus motif (not(FKRWY))(ACFHILMPVWY)(DE)X(AGSV)R/X. This motif is found in 1,139 of 5,889 predicted yeast proteins. We analyzed 28 candidate proteins containing this motif as well as 35 proteins that contain a core (DE)XXR motif. We could so far not confirm new separase substrates, but we have uncovered other forms of mitotic regulation of some of the proteins. We studied whether determinants other than the cleavage site motif mediate separase-substrate interaction. When the separase active site was occupied with a peptide inhibitor covering the cleavage site motif, separase still efficiently interacted with its substrate Scc1. This suggests that separase recognizes both a cleavage site consensus sequence as well as features outside the cleavage site.  相似文献   

15.
Flavoenzymes have been extensively studied for their structural and mechanistic properties because they find potential application as industrial biocatalysts. They are attractive for biocatalysis because of the selectivity, controllability and efficiency of their reactions. Some of these enzymes catalyse the oxidative modification of protein substrates. Among them oxygenases (monoxoygenases and dioxygenases) are of special interest because they are highly entantio as well as regio-selective and can be used for oxyfunctionalisation. Dioxygenase enzymes catalyse oxygenation reactions in which both di-oxygen atoms are incorporated into the product. A dioxygenase enzyme purified from Aspergillus fumigatus MC8 was subjected to protein digestion followed by peptide sequencing. The sequence analysis of the peptide fragments resulted in identifying its match with that of an extracellular dioxygenase sequence from the same species of fungus existing in the protein database. The sequence was submitted to protein homology/analogy recognition engine online server for homology modelling and the 3D structure was predicted. Subsequently, the in silico studies of the enzyme–substrate (protein–ligand) interaction were carried out by using the method of molecular docking simulations wherein the modelled dioxygenase enzyme (protein) was docked with the substrates (ligands), catechin and epicatechin.  相似文献   

16.
Calcineurin is a serine/threonine phosphatase involved in a wide range of cellular responses to calcium mobilizing signals. Previous evidence supports the notion of the existence of a redox regulation of this enzyme, which might be relevant for neurodegenerative processes, where an imbalance between generation and removal of reactive oxygen species could occur. In a recent work, we have observed that calcineurin activity is depressed in two models for familial amyotrophic lateral sclerosis (FALS) associated with mutations of the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1), namely in neuroblastoma cells expressing either SOD1 mutant G93A or mutant H46R and in brain areas from G93A transgenic mice. In this work we report that while wild-type SOD1 has a protective effect, calcineurin is oxidatively inactivated by mutant SOD1s in vitro; this inactivation is mediated by reactive oxygen species and can be reverted by addition of reducing agents. Furthermore, we show that calcineurin is sensitive to oxidation only when it is in an 'open', calcium-activated conformation, and that G93A-SOD1 must have its redox-active copper site available to substrates in order to exert its pro-oxidant properties on calcineurin. These findings demonstrate that both wild-type and mutant SOD1s can interfere directly with calcineurin activity and further support the possibility of a relevant role for calcineurin-regulated biochemical pathways in the pathogenesis of FALS.  相似文献   

17.
The nature of the primary signals important for the addition of xylose to serines on the core protein of the cartilage chondroitin sulfate proteoglycan has been investigated. The importance of consensus sequence elements (Acidic-Acidic-Xxx-Ser-Gly-Xxx-Gly) in the natural acceptor was shown by the significant decrease in acceptor capability of peptide fragments derived by digestion of deglycosylated core protein with Staphylococcus aureus V8 protease, which cleaves within the consensus sequence, compared to the similar reactivity of trypsin-derived peptide fragments, in which consensus sequences remain intact. A comparison of the acceptor efficiencies (Vmax/Km) of synthetic peptides containing the proposed xylosylation consensus sequence and the natural acceptor (deglycosylated core protein) was then made by use of the in vitro xylosyltransferase assay. The two types of substrates were found to have nearly equivalent acceptor efficiencies and to be competitive inhibitors of each other's acceptor capability, with Km = Kiapparent. These results suggest that the artificial peptides containing the consensus sequence are analogues of individual substitution sites on the core protein and allowed the kinetic mechanism of the xylosyltransferase reaction to be investigated, with one of the artificial peptides as a model substrate. The most probable kinetic mechanism for the xylosyltransferase reaction was found to be an ordered single displacement with UDP-xylose as the leading substrate and the xylosylated peptide as the first product released. This represents the first reported formal kinetic mechanism for this glycosyltransferase and the only one reported for a nucleotide sugar:protein transferase.  相似文献   

18.
We have recently described a biochemical detection method for peptide products of enzymatic reactions based on the formation of PDZ domain*peptide ligand complexes. The product sensor is based on using masked or cryptic PDZ domain peptide ligands as enzyme substrates. Upon enzymatic processing, a PDZ-binding motif is exposed, and the product sequence bound specifically by a Eu(3+)chelate-labeled GST-PDZ ([Eu(3+)]GST-PDZ). The practical applicability of this PDZ-based detection method is determined by the affinity of the PDZ domain*peptide ligand interaction, and the efficiency of the enzyme to process the masked peptide ligand. To expand the use of this PDZ-based detection strategy to a broader range of enzymatic assays, we have taken advantage of the plasticity in ligand recognition by the variety of PDZ domains found in nature. In the original work, the PDZ3 of PSD-95 was used, which preferentially recognizes the consensus sequence Ser-X-Val-COOH. Here, we show that NHERF PDZ1, which binds to the consensus sequence Thr/Ser-X-Leu-COOH, can be used to extend the flexibility in the recognition of the carboxy-terminal amino acid of the ligand, and monitor the enzymatic activity of HIV protease. The choices of detection format, for example, TRET or ALPHA, were also investigated and influenced assay design.  相似文献   

19.
Cyclophilin A (CypA) is a peptidyl-prolyl cis/trans-isomerase that is involved in multiple signaling events of eukaryotic cells. It might either act as a catalyst for prolyl bond isomerization, or it can form stoichiometric complexes with target proteins. We have investigated the linear sequence recognition code for CypA by phage display and found the consensus motif FGPXLp to be selected after five rounds of panning. The peptide FGPDLPAGD showed inhibition of the isomerase reaction and NMR chemical shift mapping experiments highlight the CypA interaction epitope. Ligand docking suggests that the peptide was able to bind to CypA in the cis- and trans-conformation. Protein Data Bank searches reveal that many human proteins contain the consensus motif, and several of these protein motifs are shown to interact with CypA in vitro. These sequences represent putative target sites for binding of CypA to intracellular proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号