首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mendoza JA  Dulin P  Warren T 《Cryobiology》2000,41(4):319-323
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.  相似文献   

2.
Mendoza  J. A.  Manson  M.  Joves  F.  Ackermann  E. 《Biotechnology Techniques》1996,10(7):535-540
Summary The influence of GroEL on the heat-inactivation of nine enzymes was analyzed. Five dehydrogenases and four other unrelated enzymes were heat-inactivated in the absence and presence of GroEL, at three different temperatures. GroEL protected most enzymes against inactivation and prevented their aggregation. Further, the formation of a highly stable complex was observed when rhodanese was thermoinactivated in the presence of GroEL.  相似文献   

3.
To clarify the role of chaperones in the development of amyloid diseases, the interaction of the chaperonin GroEL with misfolded proteins and recombinant prions has been studied. The efficiency of the chaperonin-assisted folding of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be decreased in the presence of prions. Prions are capable of binding to GroEL immobilized on Sepharose, but this does not prevent the interaction between GroEL and other denatured proteins. The size of individual proteins (GroEL, GAPDH, and the recombinant prion) and aggregates formed after their mixing have been determined by the dynamic light scattering analysis. It was shown that at 25°C, the non-functioning chaperonin (equimolar mixture of GroEL and GroES in the absence of Mg-ATP) bound prion yielding large aggregates (greater than 400 nm). The addition of Mg-ATP decreased significantly the size of the aggregates to 70–80 nm. After blocking of one of the chaperonin active sites by oxidized denatured GAPDH, the aggregate size increased to 1200 nm, and the addition of Mg-ATP did not prevent the aggregation. These data indicate the significant role of chaperonins in the formation of amyloid structures and demonstrate the acceleration of aggregation in the presence of functionally inactive chaperonins. The suggested model can be used for the analysis of the efficiency of antiaggregants in the system containing chaperonins.  相似文献   

4.
The 2.9A resolution crystal structure of apo wild-type GroEL was determined for the first time and represents the reference structure, facilitating the study of structural and functional differences observed in GroEL variants. Until now the crystal structure of the mutant Arg13Gly, Ala126Val GroEL was used for this purpose. We show that, due to the mutations as well as to the presence of a crystallographic symmetry, the ring-ring interface was inaccurately described. Analysis of the present structure allowed the definition of structural elements at this interface, essential for understanding the inter-ring allosteric signal transmission. We also show unambiguously that there is no ATP-induced 102 degrees rotation of the apical domain helix I around its helical axis, as previously assumed in the crystal structure of the (GroEL-KMgATP)(14) complex, and analyze the apical domain movements. These results enabled us to compare our structure with other GroEL crystal structures already published, allowing us to suggest a new route through which the allosteric signal for negative cooperativity propagates within the molecule. The proposed mechanism, supported by known mutagenesis data, underlines the importance of the switching of salt bridges.  相似文献   

5.
6.
A structural model for the GroEL chaperonin   总被引:1,自引:0,他引:1  
Abstract Individual particle analysis of end views from negatively stained specimensof purified GroEL from Escherichia coli showed the presence of two different particle populations, those with a six-fold symmetry and those with a seven-fold symmetry, when studied at pH 7.7 and 5.0. Image processing of particles from frozen-hydrated specimens revealed at both pH values a homogeneous population of particles with a strong seven-fold symmetry component and an average image with seven asymmetric units. Biochemical analysis of purified GroEL showed unequivocally the presence of a single polypeptide with the N-terminal sequence identical to that of GroEL. These results are compatible with a structural model of GroEL as an asymmetric aggregate built up by two rings of seven-fold and six-fold symmetries, respectively.  相似文献   

7.
It has been shown that in Escherichia coli the chaperone DnaK is necessary for the late stages of 50S and 30S ribosomal subunit assembly in vivo. Here we focus on the roles of other HSPs (heat-shock proteins), including the chaperonin GroEL, in addition to DnaK, in ribosome biogenesis at high temperature. GroEL is shown to be required for the very late 45S-->50S step in the biogenesis of the large ribosome subunit, but not for 30S assembly. Interestingly, overproduction of GroES/GroEL can partially compensate for a lack of DnaK/DnaJ at 44 degrees C.  相似文献   

8.
The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL-rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions.  相似文献   

9.
Lysozyme reactivation using immobilized molecular chaperonin GroEL   总被引:1,自引:0,他引:1  
The molecular chaperonin, GroEL, was immobilized to a porous matrix and used to reactivate denatured lysozyme. The maximum reactivation yield was obtained at 37°C and pH 6–8 and about 90% activity of the denatured lysozyme was restored under the conditions. The coupling density of GroEL had little effect on the chaperoning activity of GroEL up to 48 mg g–1 gel. The immobilized GroEL was reusable, indicating the possibility of using it on a large scale for the refolding of proteins.  相似文献   

10.
Z Wang  H p Feng  S J Landry  J Maxwell  L M Gierasch 《Biochemistry》1999,38(39):12537-12546
The molecular chaperonins are essential proteins involved in protein folding, complex assembly, and polypeptide translocation. While there is abundant structural information about the machinery and the mechanistic details of its action are well studied, it is yet unresolved how chaperonins recognize a large number of structurally unrelated polypeptides in their unfolded or partially folded forms. To determine the nature of chaperonin-substrate recognition, we have characterized by NMR methods the interactions of GroEL with synthetic peptides that mimic segments of unfolded proteins. In previous work, we found using transferred nuclear Overhauser effect (trNOE) analysis that two 13 amino acid peptides bound GroEL in an amphipathic alpha-helical conformation. By extending the study to a variety of peptides with differing sequence motifs, we have observed that peptides can adopt conformations other than alpha-helix when bound to GroEL. Furthermore, peptides of the same composition exhibited significantly different affinities for GroEL as manifested by the magnitude of trNOEs. Binding to GroEL correlates well with the ability of the peptide to cluster hydrophobic residues on one face of the peptide, as determined by the retention time on reversed-phase (RP) HPLC. We conclude that the molecular basis of GroEL-substrate recognition is the presentation of a hydrophobic surface by an incompletely folded polypeptide and that many backbone conformations can be accommodated.  相似文献   

11.
Panda M  Ybarra J  Horowitz PM 《Biochemistry》2002,41(42):12843-12849
We investigated the dissociation of single-ring heptameric GroEL (SR1) by high hydrostatic pressure in the range of 1-2.5 kbar. The kinetics of the dissociation of SR1 in the absence and presence of Mg2+, KCl, and nucleotides were monitored using light scattering. The major aim of this investigation was to understand the role of the double-ring structure of GroEL by comparing its dissociation with the dissociation of the single ring. At all the pressures that were studied, SR1 dissociates much faster than the GroEL 14mer. As observed with the GroEL 14mer, SR1 also showed biphasic kinetics and the dissociated monomers do not reassociate readily back to the oligomer. Unlike the GroEL 14mer, the observed rates for SR1 dissociation are independent of the concentrations of Mg2+ and KCl in the studied range. The effects of nucleotides on the observed rates, in the absence or presence of Mg2+ and KCl, are not very significant. The heterogeneity induced in the GroEL molecule with the double-ring structure by ligands such as Mg2+, KCl, and nucleotides is not observed in the case of SR1. This indicates that the inter-ring negative cooperativity in the double-ring GroEL has a major role in this regard. The results presented in this investigation demonstrate that the presence of a second ring in the GroEL 14mer is important for its stability in an environment where the functional ligands of the chaperonin are available.  相似文献   

12.
The inactivation and conformational changes of the bacterial chaperonin GroEL have been studied in SDS solutions with different concentrations. The results show that increasing the SDS concentration caused the intrinsic fluorescence emission intensity to increase and the emission peak to slightly blue-shift, indicating that increasing the SDS concentration can cause the hydrophobic surface to be slightly buried. The changes in the ANS-binding fluorescence with increasing SDS concentration also showed that the GroEL hydrophobic surface decreased. At low SDS concentrations, less than 0.3 mM, the GroEL ATPase activity increased with increasing SDS concentration. Increasing the SDS concentration beyond 0.3 mM caused the GroEL ATPase activity to quickly decrease. At high SDS concentrations, above 0.8 mM, the residual GroEL ATPase activity was less than 10% of the original activity, but the GroEL molecule maintained its native conformation (as indicated by the exposure of buried thiol groups, electrophoresis, and changes of CD spectra). The above results suggest that the conformational changes of the active site result in the inactivation of the ATPase even though the GroEL molecule does not markedly unfold at low SDS concentrations.  相似文献   

13.
The chaperonin GroEL binds nonnative substrate protein in the central cavity of an open ring through exposed hydrophobic residues at the inside aspect of the apical domains and then mediates productive folding upon binding ATP and the cochaperonin GroES. Whether nonnative proteins bind to more than one of the seven apical domains of a GroEL ring is unknown. We have addressed this using rings with various combinations of wild-type and binding-defective mutant apical domains, enabled by their production as single polypeptides. A wild-type extent of binary complex formation with two stringent substrate proteins, malate dehydrogenase or Rubisco, required a minimum of three consecutive binding-proficient apical domains. Rhodanese, a less-stringent substrate, required only two wild-type domains and was insensitive to their arrangement. As a physical correlate, multivalent binding of Rubisco was directly observed in an oxidative cross-linking experiment.  相似文献   

14.
Topologies of a substrate protein bound to the chaperonin GroEL   总被引:3,自引:0,他引:3  
The chaperonin GroEL assists polypeptide folding through sequential steps of binding nonnative protein in the central cavity of an open ring, via hydrophobic surfaces of its apical domains, followed by encapsulation in a hydrophilic cavity. To examine the binding state, we have classified a large data set of GroEL binary complexes with nonnative malate dehydrogenase (MDH), imaged by cryo-electron microscopy, to sort them into homogeneous subsets. The resulting electron density maps show MDH associated in several characteristic binding topologies either deep inside the cavity or at its inlet, contacting three to four consecutive GroEL apical domains. Consistent with visualization of bound polypeptide distributed over many parts of the central cavity, disulfide crosslinking could be carried out between a cysteine in a bound substrate protein and cysteines substituted anywhere inside GroEL. Finally, substrate binding induced adjustments in GroEL itself, observed mainly as clustering together of apical domains around sites of substrate binding.  相似文献   

15.
GroEL is a group I chaperonin that facilitates protein folding and prevents protein aggregation in the bacterial cytosol. Mycobacteria are unusual in encoding two or more copies of GroEL in their genome. While GroEL2 is essential for viability and likely functions as the general housekeeping chaperonin, GroEL1 is dispensable, but its structure and function remain unclear.Here, we present the 2.2-Å resolution crystal structure of a 23-kDa fragment of Mycobacterium tuberculosis GroEL1 consisting of an extended apical domain. Our X-ray structure of the GroEL1 apical domain closely resembles those of Escherichia coli GroEL and M. tuberculosis GroEL2, thus highlighting the remarkable structural conservation of bacterial chaperonins. Notably, in our structure, the proposed substrate-binding site of GroEL1 interacts with the N-terminal region of a symmetry-related neighboring GroEL1 molecule. The latter is consistent with the known GroEL apical domain function in substrate binding and is supported by results obtained from using peptide array technology. Taken together, these data show that the apical domains of M. tuberculosis GroEL paralogs are conserved in three-dimensional structure, suggesting that GroEL1, like GroEL2, is a chaperonin.  相似文献   

16.
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the "power stroke" that ejects substrate into the folding chamber.  相似文献   

17.
A large fraction of the newly translated polypeptides emerging from the ribosome require certain proteins, the so-called molecular chaperones, to assist in their folding. In Escherichia coli, three major chaperone systems are considered to contribute to the folding of newly synthesized cytosolic polypeptides. Trigger factor (TF), a ribosome-tethered chaperone, and DnaK are known to exhibit overlapping co-translational roles, whereas the cage-shaped GroEL, with the aid of the co-chaperonin, GroES, and ATP, is believed to be implicated in folding only after the polypeptides are released from the ribosome. However, the recent finding that GroEL-GroES overproduction permits the growth of E. coli cells lacking both TF and DnaK raised questions regarding the separate roles of these chaperones. Here, we report the puromycin-sensitive association of GroEL-GroES with translating ribosomes in vivo. Further experiments in vitro, using a reconstituted cell-free translation system, clearly demonstrate that GroEL associates with the translation complex and accomplishes proper folding by encapsulating the newly translated polypeptides in the central cavity formed by GroES. Therefore, we propose that GroEL is a versatile chaperone, which participates in the folding pathway co-translationally and also achieves correct folding post-translationally.  相似文献   

18.
Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine reactivity toward iodo[2-(14)C]acetic acid and found that the cysteines become more accessible during binding of a cysteine free mutant of HCA II. Spin labeling of GroEL with N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide revealed that this additional binding occurred because buried cysteine residues become accessible during HCA II binding. In addition, a GroEL variant labeled with 6-iodoacetamidofluorescein exhibited decreased fluorescence anisotropy upon HCA II binding, which resembles the effect of GroES/ATP binding. Furthermore, by producing cysteine-modified GroEL with the spin label N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide and the fluorescent label 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid, we detected increases in spin-label mobility and fluorescence intensity in GroEL upon HCA II binding. Together, these results show that conformational changes occur in the chaperonin as a consequence of protein substrate binding. Together with previous results on the unfoldase activity of GroEL, we suggest that the chaperonin opens up as the substrate protein binds. This opening mechanism may induce stretching of the protein, which would account for reported unfoldase activity of GroEL and might explain how GroEL can actively chaperone proteins larger than HCA II.  相似文献   

19.
We investigated GroEL substrates from Bacillus subtilis 168 using the single-ring mutant of B. subtilis GroEL. We identified 28 candidates for GroEL substrates, of which Spo0B, Ald, Eno, SpoIIP, and FbaA were involved in spore formation, and Rnc, Tuf, Eno, Tsf, and FbaA were essential for B. subtilis growth. As observed at the protein level, the amount of SpoIIP interaction with GroEL increased at 3 h after initiation of sporulation.  相似文献   

20.
We have studied two members of the family of morphogenetic factors or chaperonins, the GroEL-like factors from Escherichia coli and Bacillus subtilis, in order to determine the possible structural basis of their related function in promoting the correct and efficient assembly of biological oligomers. The main objective of this work has been to study by transmission electron microscopy the possible changes that these factors may undergo when subjected to a number of different conditions such as changes in temperature in vivo and in pH in vitro. We applied both rotational and multivariate statistical analyses of single particles to images of GroEl-like aggregates from the two bacteria. The most striking result is the finding of two distinct "front views" of these aggregates, from both E. coli and B. subtilis. One view, which has not been described earlier, shows a sixfold symmetry and is most abundant at growing temperatures below 37 degrees C. After heat shock, a view showing seven morphological units becomes dominant. On the basis of our analysis it is clear that GroEL-like morphogenetic factors from two unrelated bacteria such as E. coli and B. subtilis present two distinct views: one sixfold and the other sevenfold. Their relative percentage of appearance is related to the temperature at which the cells were grown and also to the storage conditions (pH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号