首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL-rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions.  相似文献   

2.
Mendoza JA  Dulin P  Warren T 《Cryobiology》2000,41(4):319-323
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.  相似文献   

3.
GroEL C138W is a mutant form of Escherichia coli GroEL, which forms an arrested ternary complex composed of GroEL, the co-chaperonin GroES and the refolding protein molecule rhodanese at 25 degrees C. This state of arrest could be reversed with a simple increase in temperature. In this study, we found that GroEL C138W formed both stable trans- and cis-ternary complexes with a number of refolding proteins in addition to bovine rhodanese. These complexes could be reactivated by a temperature shift to obtain active refolded protein. The simultaneous binding of GroES and substrate to the cis ring suggested that an efficient transfer of substrate protein into the GroEL central cavity was assured by the binding of GroES prior to complete substrate release from the apical domain. Stopped-flow fluorescence spectroscopy of the mutant chaperonin revealed a temperature-dependent conformational change in GroEL C138W that acts as a trigger for complete protein release. The behavior of GroEL C138W was reflected closely in its in vivo characteristics, demonstrating the importance of this conformational change to the overall activity of GroEL.  相似文献   

4.
The initial steps of heat-induced inactivation and aggregation of the enzyme rhodanese have been studied and found to involve the early formation of modified but catalytically active conformations. These intermediates readily form active dimers or small oligomers, as evident from there being only a small increase in light scattering and an increase in fluorescence energy homotransfer from rhodanese labeled with fluorescein. These species are probably not the domain-unfolded form, as they show activity and increased protection of hydrophobic surfaces. Cross-linking with glutaraldehyde and fractionation by gel filtration show the predominant formation of dimer during heat incubation. Comparison between the rates of aggregate formation at 50 degrees C after preincubation at 25 or 40 degrees C gives evidence of product-precursor relationships, and it shows that these dimeric or small oligomeric species are the basis of the irreversible aggregation. The thermally induced species is recognized by and binds to the chaperonin GroEL. The unfoldase activity of GroEL subsequently unfolds rhodanese to produce an inactive conformation and forms a stable, reactivable complex. The release of 80% active rhodanese upon addition of GroES and ATP indicates that the thermal incubation induces an alteration in conformation, rather than any covalent modification, which would lead to formation of irreversibly inactive species. Once oligomeric species are formed from the intermediates, GroEL cannot recognize them. Based on these observations, a model is proposed for rhodanese aggregation that can explain the paradoxical effect in which rhodanese aggregation is reduced at higher protein concentration.  相似文献   

5.
When the enzyme rhodanese was inactivated with hydrogen peroxide (H(2)O(2)), it underwent significant conformational changes, leading to an increased exposure of hydrophobic surfaces. Thus, this protein seemed to be an ideal substrate for GroEL, since GroEL uses hydrophobic interactions to bind to its substrate polypeptides. Here, we report on the facilitated reactivation (86%) of H(2)O(2)-inactivated rhodanese by GroEL alone. Reactivation by GroEL required a reductant and the enzyme substrate, but not GroES or ATP. Further, we found that GroEL interacted weakly and/or transiently with H(2)O(2)-inactivated rhodanese. A strong interaction with rhodanese was obtained when the enzyme was pre-incubated with urea, indicating that exposure of hydrophobic surfaces alone on oxidized rhodanese was not sufficient for the formation of a strong complex and that a more unfolded structure of rhodanese was required to interact strongly with GroEL. Unlike prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that GroEL can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein. Additionally, the mechanism for the GroEL-facilitated reactivation of rhodanese shown here appears to be different than that for the chaperonin-assisted folding of chemically unfolded polypeptides in which a nucleotide and sometimes GroES is required.  相似文献   

6.
Molecular chaperones GroEL and GroES facilitate reactivation of denatured rhodanese which folds poorly unless the process is assisted. The present work tests the hypothesis that more extensively unfolded forms of rhodanese bind tighter than those forms that appear later in the folding pathway. The study of the interaction of different urea-induced forms of rhodanese with GroEL suggests that species preceding the domain folded form bind directly and productively to GroEL. Rhodanese partially folds while in the GroEL-GroES-ADP complex, but it does not significantly reach an active state. Partially folded rhodanese can be released from the GroEL-GroES-ADP complex by subdenaturing concentrations of urea as a homogeneous species that is committed to fold to the native conformation with little or no partitioning to the aggregated state. Dilution of denatured rhodanese to the same final concentration gives less active enzyme and significant aggregation. Urea denaturation studies show that active rhodanese released from complexes behaves identically to native enzyme, while spontaneously folded rhodanese has a different stability. These results are interpreted using a previously proposed model based on studies of unassisted rhodanese folding [Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120-128. Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63-70].  相似文献   

7.
The molecular chaperone, GroEL, facilitates correct protein folding and inhibits protein aggregation. The function of GroEL is often, though not invariably, dependent on the co-chaperone, GroES, and ATP. In this study it is shown that GroEL alone substantially reduces the inactivation of purified Ca(++)-ATPase from rabbit skeletal muscle sarcoplasmic reticulum. In the absence of GroEL, the enzyme became completely inactive in about 45-60 hours when kept at 25 degrees C, while in the presence of an equimolar amount of GroEL, the enzyme remained approximately 80% active even after 75 hours. Equimolar amounts of BSA or lysozyme were unable to protect the enzyme from inactivation under identical conditions. Analysis by SDS-PAGE showed GroEL was acting by blocking the aggregation of ATPase at 25 degrees C. GroEL was not as effective in protection at -20 degrees C or 4 degrees C. These results are discussed in the context of current models of the GroEL mechanism.  相似文献   

8.
The chaperonin protein cpn60 from Escherichia coli protects the monomeric, mitochondrial enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) against heat inactivation. The thermal inactivation of rhodanese was studied for four different states of the enzyme: native, refolded, bound to cpn60 in the form of a binary complex formed from unfolded rhodanese, and a thermally perturbed state. Thermal stabilization is observed in a range of temperatures from 25 to 48 degrees C. Rhodanese that had been inactivated by incubation at 48 degrees C, in the presence of cpn60 can be reactivated at 25 degrees C, upon addition of cpn10, K+, and MgATP. A recovery of about 80% was achieved after 1 h of the addition of those components. Thus, the enzyme is protected against heat inactivation and kept in a reactivable form if inactivation is attempted using the binary complex formed between rhodanese folding intermediate(s) and cpn60. The chaperonin-assisted refolding of urea-denatured rhodanese is dependent on the temperature of the refolding reaction. However, optimal chaperonin assisted refolding of rhodanese observed at 25 degrees C, which is achieved upon addition of cpn10 and ATP to the cpn60-rhodanese complex, is independent of the temperature of preincubation of the complex, that was formed previously at low temperature. The results are in agreement with a model in which the chaperonin cpn60 interacts with partly folded intermediates by forming a binary complex which is stable to elevated temperatures. In addition, it appears that native rhodanese can be thermally perturbed to produce a state different from that achieved by denaturation that can interact with cpn60.  相似文献   

9.
10.
Inactivation of splicing factors in HeLa cells subjected to heat shock   总被引:9,自引:0,他引:9  
The nuclear extracts from HeLa cells subjected to heat shock at 43 or 46 degrees C for 2 h were unable to splice pre-mRNA in vitro. Analysis of snRNPs in the extracts revealed that the U4.U5.U6 small nuclear ribonucleoprotein particle (snRNP) complex was disrupted at both temperatures while U1 and U2 snRNPs remained unaffected at 43 degrees C but were disrupted to certain extent during heat shock at 46 degrees C. During splicing reaction, the extract from cells heat shocked at 43 degrees C formed intermediate splicing complexes alpha and beta but was unable to form a functional spliceosome, complex gamma. Addition of fractions from a normal nuclear extract restored splicing activity only in the extract from cells subjected to heat shock at 43 degrees C. Using this complementation assay, we have partially purified the factor(s) inactivated at this temperature. The purified factor(s) was essentially devoid of snRNAs and snRNPs and resistant to micrococcal nuclease, indicating that the factor(s) inactivated by in vivo heat shock at 43 degrees C is a protein. We have also subjected the nuclear extracts from normal HeLa cells to in vitro heat treatment at 43 or 46 degrees C. The results indicate that during in vitro heat treatment of the extracts the damage to splicing machinery is more extensive than that during in vivo heat shock. These experiments also suggest that the factor(s) inactivated by heat shock at 43 degrees C is different from previously identified thermolabile splicing factors.  相似文献   

11.
A20 lymphoma cells were subjected to heat shock for 2 h at 42 and 43 +/- 0.1 degrees C and then evaluated at 37 degrees C for sensitivity to lysis by intact allo-specific cytotoxic T lymphocytes (CTLs), perforin-containing granules isolated from CTLs, and Fas-mediated apoptosis. Heat shock at 42 degrees C caused little change in sensitivity of the lymphoma cell line to lysis by intact CTLs or their isolated cytotoxic granules, but caused increased sensitivity to Fas-mediated apoptosis. However, A20 cells shocked at 43 degrees C declined significantly in sensitivity to lysis by intact CTLs, while remaining very sensitive to perforin granules and to Fas-mediated apoptosis. Expression of the inducible heat shock protein was observed in A20 cells incubated at 43 degrees C, but not in those incubated at 42 degrees C, suggesting a role for heat shock proteins. Furthermore, A20 cells shocked at 43 degrees C did not provoke degranulation and secretion of granzymes by antigen-specific CTLs, although formation of CTL-target conjugates and levels of MHC class I molecules remained unchanged. These observations demonstrate that hyperthermia or febrile conditions may reduce susceptibility of target cells to CTL attack due to failure of antigen presentation and the inability of CTLs to recognize heat stressed targets, thus enabling targets to escape CTL attack.  相似文献   

12.
A molecular dynamics simulation of the active unfolding of denatured rhodanese by the chaperone GroEL is presented. The compact denatured protein is bound initially to the cis cavity and forms stable contacts with several of the subunits. As the cis ring apical domains of GroEL undergo the transition from the closed to the more open (ATP-bound) state, they exert a force on rhodanese that leads to the increased unfolding of certain loops. The contacts between GroEL and rhodanese are analyzed and their variation during the GroEL transition is shown. The major contacts, which give rise to the stretching force, are found to be similar to those observed in crystal structures of peptides bound to the apical domains. The results of the simulation show that multidomain interactions play an essential role, in accord with experiments. Implications of the results for mutation experiments and for the action of GroEL are discussed.  相似文献   

13.
The enzyme rhodanese is greatly stabilized in the range pH 4-6, and samples at pH 5 are fully active after several days at 23 degrees C. This is very different from results at pH greater than 7, where there is significant loss of activity within 1 h. A pH-dependent conformational change occurs below pH 4 in a transition centered around pH 3.25 that leads slowly to inactive rhodanese at pH 3 (t 1/2 = 22 min at pH3). The inactive rhodanese can be reactivated by incubation under conditions required for detergent-assisted refolding of denatured rhodanese. The inactive enzyme at pH 3 has the maximum of its intrinsic fluorescence spectrum shifted to 345 nm from 335 nm, which is characteristic of native rhodanese at pH greater than 4. At pH 3, rhodanese shows increased exposure of organized hydrophobic surfaces as measured by 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid binding. The secondary structure is maintained over the entire pH range studied (pH 2-7). Fluorescence anisotropy measurements of the intrinsic fluorescence provide evidence suggesting that the pH transition produces a state that does not display greatly increased average flexibility at tryptophan residues. Pepsin digestibility of rhodanese follows the pH dependence of conformational changes reported by activity and physical methods. Rhodanese is resistant to proteolysis above pH 4 but becomes increasingly susceptible as the pH is lowered. The form of the enzyme at pH 3 is cleaved at discrete sites to produce a few large fragments. It appears that pepsin initially cleaves close to one end of the protein and then clips at additional sites to produce species of a size expected for the individual domains into which rhodanese is folded. Overall, it appears that in the pH range between pH 3 and 4, titration of groups on rhodanese leads to opening of the structure to produce a conformation resembling, but more rigid than, the molten globule state that is observed as an intermediate during reversible unfolding of rhodanese.  相似文献   

14.
GroELx and GroESx proteins of symbiotic X-bacteria from Amoeba proteus were overproduced in Escherichia coli transformed with pAJX91 and pUXGPRM, respectively, and their chaperonin functions were assayed. We utilized sigma(70)-dependent specific promoters of groEx in the expression vectors and grew recombinant cells at 37 degrees C to minimize coexpression of host groE of E. coli. For purifying the proteins, we applied the principle of heat stability for GroELx and pI difference for GroESx to minimize copurification with the hosts GroEL and GroES, respectively. After ultracentrifugation in a sucrose density gradient, the yield and purity of GroELx were 56 and 89%, respectively. The yield and purity of GroESx after anion-exchange chromatography were 62 and 91%, respectively. Purified GroELx had an ATPase activity of 53.2 nmol Pi released/min/mg protein at 37 degrees C. The GroESx protein inhibited ATPase activity of GroELx to 60% of the control at a ratio of 1 for GroESx-7mer/GroELx-14mer. GroESLx helped refolding of urea-unfolded rhodanese up to 80% of the native activity at 37 degrees C. By chemical cross-linking analysis, oligomeric properties of GroESx and GroELx were confirmed as GroESx(7) and GroELx(14) in two stacks of GroELx(7). In this study, we developed a method for the purification of GroESLx and demonstrated that their chaperonin function is homologous to GroESL of E. coli.  相似文献   

15.
Whole cells of Pseudomonas aeruginosa possess rhodanese activity. The enzyme can be released by rapidly resuspending the cells in cold Tris--HCl buffer. Approximately 95% of the rhodanese activity is released by cold shock. Release of the enzyme can be inhibited either by preincubating the cells with Mg2+ or by incorporating Mg2+ into the shocking buffer. The effect of Mg2+ can be reversed by washing the cells twice with buffer prior to cold shock. While rhodanese can be released from P. aeruginosa by cold shock, lactic dehydrogenase, a cytoplasmic enzyme, remains within the cell. Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity. These data suggest that rhodanese in P. aeruginosa, like alkaline phosphatase, is located distal to the cytoplasmic membrane in the periplasmic space. Electron micrographs also show that portions of the lipopolysaccharide outer membrane are shed from the cell during cold shock, while cells preincubated with Mg2+ did not release segments of their outer membrane.  相似文献   

16.
The in vitro folding of rhodanese involves a competition between formation of properly folded enzyme and off-pathway inactive species. Co-solvents like glycerol or low temperature, e.g. refolding at 10 degrees C, successfully retard the off-pathway formation of large inactive aggregates, but the process does not yield 100% active enzyme. These data suggest that mis-folded species are formed from early folding intermediates. GroEL can capture early folding intermediates, and it loses the ability to capture and reactivate rhodanese if the enzyme is allowed first to spontaneously fold for longer times before it is presented to GroEL, a process that leads to the formation of unproductive intermediates. In addition, GroEL cannot reverse large aggregates once they are formed, but it could capture some folding intermediates and activate them, even though they are not capable of forming active enzyme if left to spontaneous refolding. The interaction between GroEL and rhodanese substantially but not completely inhibits intra-protein inactivation, which is responsible for incomplete activation during unassisted refolding. Thus, GroEL not only decreases aggregation, but it gives the highest reactivation of any method of assistance. The results are interpreted using a previously suggested model based on studies of the spontaneous folding of rhodanese (Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120--128 and Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63--70).  相似文献   

17.
The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.  相似文献   

18.
Rhodanese has been extensively utilized as a model protein for the study of enzyme structure-function relationships. An immunological study of conformational changes occurring in rhodanese as a result of oxidation or thermal inactivation was conducted. Three monoclonal antibodies (MABs) to rhodanese were produced. Each MAB recognized a unique epitope as demonstrated by binding of the MABs to different proteolytic fragments of rhodanese. While none of the MABs significantly bound native, soluble, sulfur-substituted bovine rhodanese, as indicated in indirect enzyme-linked immunosorbent assay experiments, each MAB was immunoadsorbed from solution by soluble rhodanese as a function of the time rhodanese was incubated at 37 degrees C. Thus, as rhodanese was thermally inactivated, conformational changes resulted in the expression of three new epitopes. Catalytic conformers demonstrated different rates of thermally induced antigen expression. Each MAB also recognized epitopes expressed when rhodanese was immobilized on microtiter plates at 37 degrees C. Two conformers resulting from oxidation of rhodanese by hydrogen peroxide were identified immunologically. All MABs recognized rhodanese that was oxidized with peroxide and allowed to undergo a secondary cyanide-dependent reaction which also resulted in a fluorescence shift and increased proteolytic susceptibility. Only one MAB was capable of recognizing an epitope expressed when rhodanese was oxidized with peroxide and then separated from the reactants to prevent induction of the secondary conformational changes.  相似文献   

19.
GroEL undergoes an important functional and structural transition when oxidized with hydrogen peroxide (H2O2) concentrations between 15 and 20mM. When GroEL was incubated for 3h with 15 mM H2O2, it retained its quaternary structure, chaperone and ATPase activities. Under these conditions, GroEL's cysteine and tyrosine residues remained intact. However, all the methionine residues of the molecular chaperone were oxidized to the corresponding methionine-sulfoxides under these conditions. The oxidation of the methionine residues was verified by the inability of cyanogen bromide to cleave at the carboxyl side of the modified methionine residues. The role for the proportionately large number (23) of methionine residues in GroEL has not been identified. Methionine residues have been reported to have an antioxidant activity in proteins against a variety of oxidants produced in biological systems including H2O2. The carboxyl-terminal domain of GroEL is rich in methionine residues and we hypothesized that these residues are involved in the protection of GroEL's functional structure by scavenging H2O2. When GroEL was further incubated for the same time, but with increasing concentrations of H2O2 (>15 mM), the oxidation of GroEL's cysteine residues and a significant decrease of the tyrosine fluorescence due to the formation of dityrosines were observed. Also, at these higher concentrations of H2O2, the inability of GroEL to hydrolyze ATP and to assist the refolding of urea-unfolded rhodanese was observed.  相似文献   

20.
We applied different methods, such as turbidity measurements, dynamic light scattering, differential scanning calorimetry and co-sedimentation assay, to analyze the interaction of small heat shock protein Hsp27 with isolated myosin head (myosin subfragment 1, S1) under heat-stress conditions. Upon heating at 43 degrees C, Hsp27 effectively suppresses S1 aggregation, and this effect is enhanced by mutations mimicking Hsp27 phosphorylation. However, Hsp27 was unable to prevent thermal unfolding of myosin heads and to maintain their ATPase activity under heat-shock conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号