首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent studies have demonstrated that up-regulated Rho-kinase plays an important role in the pathogenesis of coronary arteriosclerosis and vasospasm. We have shown that inflammatory stimuli, such as angiotensin II and interleukin-1beta, up-regulate Rho-kinase expression and activity in human coronary vascular smooth muscle cells, for which intracellular signal transduction mediated by protein kinase C and NF-kappaB is involved. Here, we show that estrogen down-regulates while nicotine up-regulates Rho-kinase and that nicotine counteracts the inhibitory effect of estrogen on angiotensin II-induced Rho-kinase expression. Furthermore, we demonstrated that the intracellular signal transduction of the inhibitory effect of estrogen is mediated by an estrogen receptor. These results demonstrate that inflammatory stimuli up-regulate Rho-kinase, for which estrogen (mediated by an estrogen receptor) and nicotine exert divergent inhibitory and stimulatory effects on the Rho-kinase expression, respectively, and may explain in part why the incidence of arteriosclerotic and vasospastic disorders is increased in postmenopausal women and smokers.  相似文献   

2.
Recent studies have demonstrated that up-regulated Rho-kinase plays an important role in the pathogenesis of coronary arteriosclerosis and vasospasm. We have shown that inflammatory stimuli, such as angiotensin II and interleukin-1β, up-regulate Rho-kinase expression and activity in human coronary vascular smooth muscle cells, for which intracellular signal transduction mediated by protein kinase C and NF-κB is involved. Here, we show that estrogen down-regulates while nicotine up-regulates Rho-kinase and that nicotine counteracts the inhibitory effect of estrogen on angiotensin II-induced Rho-kinase expression. Furthermore, we demonstrated that the intracellular signal transduction of the inhibitory effect of estrogen is mediated by an estrogen receptor. These results demonstrate that inflammatory stimuli up-regulate Rho-kinase, for which estrogen (mediated by an estrogen receptor) and nicotine exert divergent inhibitory and stimulatory effects on the Rho-kinase expression, respectively, and may explain in part why the incidence of arteriosclerotic and vasospastic disorders is increased in postmenopausal women and smokers.  相似文献   

3.
Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.  相似文献   

4.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

5.
Numerous studies have shown that both vasoconstrictive peptide endothelin-1 (ET-1) and inflammatory marker C-reactive protein (CRP) are implicated in the inflammatory process of atherosclerosis. The purpose of the present study was to observe effect of ET-1 on CRP production and the molecular mechanisms in rat vascular smooth muscle cells (VSMCs). The results showed that ET-1 was capable of stimulating VSMCs to produce CRP both in protein and in mRNA levels in vitro and in vivo. ETA receptor antagonist BQ123, but not ETB receptor antagonist BQ788, inhibited CRP production in VSMCs. In addition, ET-1 was able to elicit reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation, and antioxidant pyrrolidine dithiocarbamate and p38MAPK inhibitor SB203580 inhibited ET-1-induced CRP expression. The results demonstrate that ET-1 induces CPR production in VSMCs via ETA receptor followed by ROS and MAPK signal pathway, which may contribute to better understanding of the role of ET-1 in inflammatory activation of the vessel wall during atherogenesis.  相似文献   

6.
The Na(+) pump and its regulation is important for maintaining membrane potential and transmembrane Na(+) gradient in all mammalian cells and thus is essential for cell survival and function. Vascular smooth muscle cells (VSMC) have a relatively low number of pump sites on their membrane compared with other cells. We wished to determine the mechanisms for regulating the number of pump sites in these cells. We used canine saphenous vein VSMC cultured in 10% serum and passaged one time. These cells were subcultured in 5% serum media with low K(+) (1 mM vs. control of 5 mM), and their pump expression was assessed. These VSMC upregulated their pump sites as early as 4 h after treatment (measured by [(3)H]ouabain binding). At this early time point, there was no detectable increase in protein expression of either alpha(1)- or beta(1)-subunits of the pump shown by Western blots. When the cells were treated with the phosphoinositide 3-kinase (PI-3-K) inhibitor LY-294002 (which is known to inhibit cytoplasmic transport processes) in low-K(+) media, the pump site upregulation was inhibited. These data suggest that the low-K(+)-induced upregulation of Na(+) pump number can occur by translocation of preformed pumps from intracellular stores.  相似文献   

7.
Extracellular calcium (Ca(2+)(o)) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca(2+)(o) stimulates proliferation of the cells. The effects of Ca(2+)(o) were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca(2+)(o)-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca(2+)(o)-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.  相似文献   

8.
  • 1.1. Protein tyrosine kinase (PTK) activities were detected in both cytosolic and particulate fractions of cultured vascular smooth muscle cells by using poly (Glu: Tyr; 4:1) as an exogenous substrate.
  • 2.2. The percent distribution of the enzyme activity between these two fractions was 70 and 30 respectively.
  • 3.3. The particulate and not the cytosolic enzyme activity was stimulated by about 4-fold in the presence of non-ionic detergent, Triton X-100 (0.5% v/v).
  • 4.4. The PTK activity in both the fractions was absolutely dependent on the presence of divalent cations such as Mg2+ and Mn2+ which were equipotent in the activation of the enzyme.These data indicate that PTK activity is expressed in cultured VSMC and provide a basis for further studies to examine a possible role of PTKs in growth and proliferation of VSMC.
  相似文献   

9.
TRAIL is a cell-associated tumor necrosis factor-related apoptosis-inducing ligand originally identified in immune cells. The ligand has the capacity to induce apoptosis after binding to cell surface receptors. To examine TRAIL expression in murine vascular tissue, we employed in situ hybridization and immunohistochemistry. In these studies, we found that TRAIL mRNA and protein were specifically localized throughout the medial smooth muscle cell layer of the pulmonary artery. Notably, a similar pattern of expression was observed in the mouse aorta. Consistent with these findings, we found that cultures of primary human aorta and pulmonary artery smooth muscle cells express abundant TRAIL mRNA and protein. We also found that these cells and endothelial cells undergo cell lysis in response to exogenous addition of TRAIL. Last, we confirmed that TRAIL specifically activated a death program by confirming poly(ADP ribose) polymerase cleavage. Overall, we believe that these findings are relevant to understanding the factors that regulate cell turnover in the vessel wall.  相似文献   

10.
The purposes of this study were to test 1) the relationship between two widely studied mitogenic effector pathways, and 2) the hypothesis that sodium-proton exchanger type 1 (NHE-1) is a regulator of extracellular signal-regulated protein kinase (ERK) activation in rat aortic smooth muscle (RASM) cells. Angiotensin II (Ang II) and 5-hydroxytryptamine (5-HT) stimulated both ERK and NHE-1 activities, with activation of NHE-1 preceding that of ERK. The concentration-response curves for 5-HT and Ang II were superimposable for both processes. Inhibition of NHE-1 with pharmacological agents or by isotonic replacement of sodium in the perfusate with choline or tetramethylammonium greatly attenuated ERK activation by 5-HT or Ang II. Similar maneuvers significantly attenuated 5-HT- or Ang II-mediated activation of MEK and Ras but not transphosphorylation of the epidermal growth factor (EGF) receptor. EGF receptor blockade attenuated ERK activation, but not NHE-1 activation by 5-HT and Ang II, suggesting that the EGF receptor and NHE-1 work in parallel to stimulate ERK activity in RASM cells, converging distal to the EGF receptor but at or above the level of Ras in the Ras-MEK-ERK pathway. Receptor-independent activation of NHE-1 by acute acid loading of RASM cells resulted in the rapid phosphorylation of ERK, which could be blocked by pharmacological inhibitors of NHE-1 or by isotonic replacement of sodium, closely linking the proton transport function of NHE-1 to ERK activation. These studies identify NHE as a new regulator of ERK activity in RASM cells.  相似文献   

11.
Lee SH  Woo HG  Baik EJ  Moon CH 《Life sciences》2000,68(1):57-67
The changes in vascular prostaglandin production are implicated in the derangement of vascular reactivity in diabetes. However, the mechanism of altered prostaglandin (PG) production in diabetes is largely unknown. In this study, we investigated the effect of high glucose on IL-1beta-induced PG production and the possible underlying mechanism in cultured vascular smooth muscle cell (VSMC). High glucose evoked an augmentation of IL-1beta-induced PG synthesis in a dose dependent manner and enhanced cyclooxygenase (COX) activity, which reached to maximum at 8-12 hours after stimulation. Western blot analysis supported the activity data. Protein kinase C (PKC) inhibitors, H-7 and chelerythrine, significantly inhibited the enhancement of IL-1beta-induced COX-2 expression by high glucose. The activation of PKC by PMA resulted in marked increase of PG production in low glucose group, whilst this was not the case in high glucose group. Furthermore, glucose-enhancing effect was significantly suppressed by zopolrestat, an aldose reductase inhibitor, and sodium pyruvate. These results suggest that the augmenting effect of high glucose on IL-1beta-induced PG production and COX-2 expression is, at least in part, due to increased glucose metabolism via sorbitol pathway following PKC activation.  相似文献   

12.
13.
Zhang J  Fu M  Myles D  Zhu X  Du J  Cao X  Chen YE 《FEBS letters》2002,512(1-3):180-184
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested previously that one repeat binds leucine while the second binds valine or isoleucine, with synergy between the two sites. We have mutated four residues in each repeat, based on a model of the regulatory subunit. The data confirm that there are separate leucine and valine/isoleucine sites, and suggest a complex pathway for regulatory signal transmission to the catalytic subunit.  相似文献   

14.
Cells of an established clonal line (RVF-SMC) derived from rat vena cava are described by light and electron microscope methods and biochemical analysis of the major proteins. The cells are flat, and they moderately elongate and form monolayers. They are characterized by prominent cables of microfilaments bundles decoratable with antibodies to actin and alpha-actinin. These bundles contain numerous densely stained bodies and are often flanked by typical rows of surface caveolae and vesicles. The cells are rich in intermediate-sized filaments of the vimentin type but do not show detectable amounts of desmin and cytokeratin filaments. Isoelectric focusing and protein chemical studies have revealed actin heterogeneity. In addition to the two cytoplasmic actins, beta and gamma, common to proliferating cells, two smooth muscle-type actins (an acidic alpha-like and a gamma-like) are found. The major (alpha-type) vascular smooth muscle actin accounts for 28% of the total cellular actin. No skeletal muscle or cardiac muscle actin has been detected. The synthesis of large amounts of actin and vimentin and the presence of at least three actins, including alpha- like actin, have also been demonstrated by in vitro translation of isolated poly(A)+ mRNAs. This is, to our knowledge, the first case of expression of smooth muscle-type actin in a permanently growing cell. We conclude that permanent cell growth and proliferation is compatible with the maintained expression of several characteristic cell features of the differentiated vascular smooth muscle cell including the formation of smooth muscle-type actin.  相似文献   

15.
本研究用培养大鼠主动脉血管平滑肌细胞(VSMCs),结果如下:(1)用生物活性检测法发现VSMCs无血清条件培养液可刺激巨噬细胞集落形成,其作用能被抗巨噬细胞集落刺激因子(MCSF)抗体抑制;(2)用免疫细胞化学技术证明VSMCs存在MCSF受体;(3)用Northern blot技术证明VSMCs有MCSF及其受本的mRNA表达,血清刺激使两者表达明显增强。本研究首次报道了培养大鼠主动脉VSMC  相似文献   

16.
17.
18.
19.
《FEBS letters》1994,340(3):226-230
The effects of synthetic rat adrenomedullin (rAM), a novel vasorelaxant peptide originally isolated from human pheochromocytoma, on receptor binding and cAMP generation were studied in cultured rat vascular smooth muscle cells (VSMC). A binding study using [125I]rAM revealed the presence of a single class of high-affinity (Kd1.3 × 10−8 M) binding sites for rAM in VSMC. The apparent Ki of rat calcitonin gene-related peptide (rCGRP) was 3 × 10−7 M. Affinity labeling of VSMC membranes with [125I]rAM revealed two distinct labeled bands with apparent molecular weights of 120 and 70 kDa, both of which were abolished by excess unlabeled rAM or rCGRP. rAM stimulated cAMP formation with an approximate EC50 of 10−8 M, the effect of which was additive with isoproterenol, but not with rCGRP. The rAM-induced cAMP response was unaffected by propranalol, indomethacin, or quinaerine, but inhibited by a CGRP receptor antagonist, human CGRP[8–37]. These data suggest that VSMC possesses specific AM receptors functionally coupled to adenylate cyclase with which CGRP interacts.  相似文献   

20.
Antiproliferative effect of L-NAME on rat vascular smooth muscle cells   总被引:2,自引:0,他引:2  
The nitric oxide synthase (NOS) inhibitor L-NAME may have growth inhibitory effects in vivo. We investigated in vitro the potential growth inhibitory effects of three different NOS inhibitors: L-NAME (1 mM), LNMMA (1 mM) and aminoguanidine (0.5 mM), on fetal bovine serum (FBS) and platelet derived growth factor (PDGF-BB)-stimulated growth in cultured vascular smooth muscle cells (VSMCs). [3H]-thymidine incorporation into rat mesenteric VSMCs was measured as an index of VSMCs proliferation (DNA synthesis) and activation of extracellular signal regulated kinase (ERK1/2), a major signaling event in cell growth, was measured by western blot assay. PDGF-BB (0-5 ng/mL) and FBS (0-5%) increased [3H]-thymidine incorporation in a dose-dependent manner up to 6-10 fold. L-NAME significantly reduced PDGF-BB (5 ng/ml) and FBS (5%) stimulated DNA synthesis by 46% and 38% respectively. The increase of [3H]-thymidine incorporation induced by PDGF-BB and FBS was unaltered by L-NMMA. In contrast, aminoguanidine induced an increase in FBS and PDGF-BB-stimulated [3H]-thymidine incorporation of 64% and 34% respectively above cells not exposed to aminoguanidine. ERK1/2 phosphorylation induced by PDGF-BB and FBS was not affected by pre-treatment with L-NAME or aminoguanidine. In conclusion, NOS inhibitors differentially influence DNA synthesis in VSMCs: L-NAME inhibits FBS and PDGF-BB-stimulated cellular proliferation whereas aminoguanidine accentuates FBS and PDGF-BB-stimulated VSMCs proliferation. These phenomena are independent of the ERK1/2 pathway. The growth inhibitory effects of L-NAME may be related to differences in properties from other NOS inhibitors, and independent of its ability to inhibit NOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号