共查询到20条相似文献,搜索用时 15 毫秒
1.
Felsovalyi F Patel T Mangiagalli P Kumar SK Banta S 《Protein science : a publication of the Protein Society》2012,21(8):1113-1125
Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. 相似文献
2.
M. Michael Gromiha Manish C. Pathak Kadhirvel Saraboji Eric A. Ortlund Eric A. Gaucher 《Proteins》2013,81(4):715-721
The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter‐residue interactions, ion‐pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic–mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three‐dimensional structures of elongation factor‐Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the importance of hydrophobicity as the dominating characteristic in the stability of thermophilic proteins, and we anticipate this will be useful in our attempts to engineering thermostable proteins. © Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
3.
Cytokinesis is a complex process that involves dynamic cortical rearrangement. Our recent time-lapse recordings of the mouse egg unexpectedly revealed a high motility of the second polar body (2pb). Experiments to address its underlying mechanism show that neither mechanical compression by the zona pellucida nor the connection via the mid-body is required for the 2pb movement. Time-lapse recordings establish that the 2pb moves together with the cell membrane. These recordings, in which cell surface proteins are labeled with fluorescent latex-microbeads or monovalent antibodies against whole mouse proteins, indicate that the majority of the surface proteins dynamically accumulate in the cleavage furrow at every cell division. Comparable dynamics of the cell surface proteins, and specifically of E-cadherin, are also observed in cultured epithelial cells. The surface protein dynamics are closely correlated with, and dependent on, those of the underlying cortical actin. The cortical actin network may form a scaffold for membrane proteins and thereby transfer them during contractile ring formation toward the cleavage furrow. Immobilization of surface proteins by tetravalent lectin-mediated crosslinking results in the failure of cleavage, demonstrating that the observed protein dynamics are essential for cytokinesis. We propose that dynamic rearrangement of the cell surface proteins is a common feature of cytokinesis, playing a key role in modifying the mechanical properties of the cell membrane during cortical ingression. 相似文献
4.
Computational studies on mutant protein stability: The correlation between surface thermal expansion and protein stability 下载免费PDF全文
Thermal stability of mutant proteins has been investigated using temperature dependent molecular dynamics (MD) simulations in vacuo. The numerical modeling was aimed at mimicking protein expansion upon heating. After the conditions for an expanding protein accessible surface area were established for T4 lysozyme and barnase wild-type proteins, MD simulations were carried out under the same conditions using the crystal structures of several mutant proteins. The computed thermal expansion of the accessible surface area of mutant proteins was found to be strongly correlated with their experimentally measured stabilities. A similar, albeit weaker, correlation was observed for model mutant proteins. This opens the possibility of obtaining stability information directly from protein structure. 相似文献
5.
6.
Circular dichroism, ellipsometry and radiolabeling techniques were employed to study the induction of changes in the secondary structure of BSA, myoglobin and cytochrome C by a hydrophobic surface. The results showed that adsorbed protein molecules lose their ordered native structure in the initial stage of adsorption and the structure appears to be a random or disordered conformation. Protein molecules adsorbed in later stages adopt a more ordered secondary structure ( helix and structure). The changes of secondary structure of globular proteins induced by a hydrophobic surface can be explained by the steric interaction between adsorbed proteins as well as by hydrophobic interactions during the adsorption process. In addition, there is obviously an intermediate stage in which the protein molecules are mainly in the structure, indicating that for certain proteins, the structure may be a more stable secondary structure than helix on the hydrophobic surface.
Correspondence to: S.-F. Sui 相似文献
7.
A mechanistic analysis of the increase in the thermal stability of proteins in aqueous carboxylic acid salt solutions 下载免费PDF全文
The stability of proteins is known to be affected significantly in the presence of high concentration of salts and is highly pH dependent. Extensive studies have been carried out on the stability of proteins in the presence of simple electrolytes and evaluated in terms of preferential interactions and increase in the surface tension of the medium. We have carried out an in-depth study of the effects of a series of carboxylic acid salts: ethylene diamine tetra acetate, butane tetra carboxylate, propane tricarballylate, citrate, succinate, tartarate, malonate, and gluconate on the thermal stability of five different proteins that vary in their physico-chemical properties: RNase A, cytochrome c, trypsin inhibitor, myoglobin, and lysozyme. Surface tension measurements of aqueous solutions of the salts indicate an increase in the surface tension of the medium that is very strongly correlated with the increase in the thermal stability of proteins. There is also a linear correlation of the increase in thermal stability with the number of carboxylic groups in the salt. Thermal stability has been found to increase by as much as 22 C at 1 M concentration of salt. Such a high thermal stability at identical concentrations has not been reported before. The differences in the heat capacities of denaturation, deltaCp for RNase A, deduced from the transition curves obtained in the presence of varying concentrations of GdmCl and that of carboxylic acid salts as a function of pH, indicate that the nature of the solvent medium and its interactions with the two end states of the protein control the thermodynamics of protein denaturation. Among the physico-chemical properties of proteins, there seems to be an interplay of the hydrophobic and electrostatic interactions that lead to an overall stabilizing effect. Increase in surface free energy of the solvent medium upon addition of the carboxylic acid salts appears to be the dominant factor in governing the thermal stability of proteins. 相似文献
8.
Makhatadze GI Loladze VV Ermolenko DN Chen X Thomas ST 《Journal of molecular biology》2003,327(5):1135-1148
The small globular protein, ubiquitin, contains a pair of oppositely charged residues, K11 and E34, that according to the three-dimensional structure are located on the surface of this protein with a spatial orientation characteristic of a salt bridge. We investigated the strength of this salt bridge and its contribution to the global stability of the ubiquitin molecule. Using the "double mutant cycle" analysis, the strength of the pairwise interactions between K11 and E34 was estimated to be favorable by 3.6kJ/mol. Further, the salt bridge of the reverse orientation, i.e. E11/K34, can be formed and is found to have a strength (3.8kJ/mol) similar to that of the K11/E34 pair. However, the global stability of the K11/E34 variant of ubiquitin is 2.2kJ/mol higher than that of the E11/K34 variant. The difference in the contribution of the opposing salt bridge orientations to the overall stability of the ubiquitin molecule is attributed to the difference in the charge-charge interactions between residues forming the salt bridge and the rest of the ionizable groups in this protein. On the basis of these results, we concluded that surface salt bridges are stabilizing, but their contribution to the overall protein stability is strongly context-dependent, with charge-charge interactions being the largest determinant. Analysis of 16 salt bridges from six different proteins, for which detailed experimental data on energetics have been reported, support the conclusions made from the analysis of the salt bridge in ubiquitin. Implications of these findings for engineering proteins with enhanced thermostability are discussed. 相似文献
9.
Taniguchi K Nomura K Hata Y Nishimura T Asami Y Kuroda A 《Biotechnology and bioengineering》2007,96(6):1023-1029
Targeting functional proteins to specific sites on a silicon device is essential for the development of new biosensors and supramolecular assemblies. Using intracellular lysates of several bacterial strains, we found that ribosomal protein L2 binds tightly to silicon particles, which have surfaces that are oxidized to silica. A fusion of E. coli L2 and green fluorescence protein adsorbed to the silica particles with a K(d) of 0.7 nM at pH 7.5 and also adsorbed to glass slides. This fusion protein was retained on the glass slide even after washing for 24 h with a buffer containing 1 M NaCl. We mapped the silica-binding domains of E. coli L2 to amino acids 1-60 and 203-273. These two regions seemed to cooperatively mediate the strong silica-binding characteristics of L2. A fusion of L2 and firefly luciferase also adsorbed on the glass slide. This L2 silica-binding tag, which we call the "Si-tag," can be used for one-step targeting of functional proteins on silica surfaces. 相似文献
10.
Letícia C. de Lencastre Novaes Priscila G. Mazzola Adalberto Pessoa Jr. Thereza C. Vessoni Penna 《Biotechnology progress》2010,26(1):252-256
Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70–95°C. Thermal stability was expressed in decimal reduction time. It was observed that the D‐values obtained were almost constant for temperatures of 85, 90, and 95°C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75°C, PEG 600 and 4,000 g/mol stabilized GFP. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
11.
Muhammad Aasim Muhammad H. Khan Noor Shad Bibi Marcelo Fernandez-Lahore 《Biotechnology progress》2022,38(2):e3232
Ion exchange chromatography is one of the most widely used chromatographic technique for the separation and purification of important biological molecules. Due to its wide applicability in separation processes, a targeted approach is required to suggest the effective binding conditions during ion exchange chromatography. A surface energetics approach was used to study the interaction of proteins to different types of ion exchange chromatographic beads. The basic parameters used in this approach are derived from the contact angle, streaming potential, and zeta potential values. The interaction of few model proteins to different anionic and cationic exchanger, with different backbone chemistry, that is, agarose and methacrylate, was performed. Generally, under binding conditions, it was observed that proteins having negative surface charges showed strong to lose interaction (20 kT for Hannilase to 0.5 kT for IgG) with different anionic exchangers (having different positive surface charges). On the contrary, anionic exchangers showed almost no interaction (0–0.1 kT) with the positively charged proteins. An inverse behavior was observed for the interaction of proteins to cationic exchangers. The outcome from these theoretical calculations can predict the binding behavior of different proteins under real ion exchange chromatographic conditions. This will ultimately propose a better bioprocess design for protein separation. 相似文献
12.
An entropic stabilization mechanism has recently gained attention and credibility as the physical ground for the extra thermal stability of globular proteins from thermophilic microorganisms. An empirical result, obtained from the analysis of thermodynamic data for a large set of proteins, strengthens the general reliability of the theoretical approach originally devised to rationalize the occurrence of cold denaturation [Graziano, PCCP 2014, 16, 21755–21767]. It is shown that this theoretical approach can readily account for the entropic stabilization mechanism. On decreasing the conformational entropy gain associated with denaturation, the thermal stability of a model globular protein increases markedly. 相似文献
13.
Kuiper MJ Lankin C Gauthier SY Walker VK Davies PL 《Biochemical and biophysical research communications》2003,300(3):645-648
Antifreeze proteins (AFPs) can protect organisms from freezing injury by adsorbing to ice and inhibiting its growth. We describe here a method where ice, grown on a cold finger, is used to selectively adsorb and purify these ice-binding proteins from a crude mixture. Type III recombinant AFP was enriched approximately 50-fold after one round of partitioning into ice and purified to homogeneity by a second round. This method can also be used to purify non-ice-binding proteins by linkage to AFP domains as demonstrated by the recovery of a 50 kDa maltose-binding protein-AFP fusion from a crude lysate of Escherichia coli. 相似文献
14.
Peroxidase-catalyzed cross linking of proteins 总被引:1,自引:0,他引:1
Incubation of casein and water-soluble soybean protein, separately or together, at 10 mg/ml with horseradish peroxidase (2.4 or 24 M) and H2O2 (1.8 or 18 mM) at pH 9.0 (0.2 M borate buffer) for 24 hr at 37°C in air led to formation of higher molecular weight compounds as determined by sodium dodecyl sulfate polyacrylamide disc gel electrophoresis. Incubation under the same conditions with peroxidase alone (in air) gave a smaller amount of higher molecular weight compounds. Incubation of lysozyme separately or with water-soluble soybean protein did not produce detectable amounts of higher molecular weight compounds. These results are discussed in terms of previously observed di- and tertyrosine isolated from peroxidase/H2O2-treated and naturally occurring proteins following acid hydrolysis. Transglutaminase, lipoxygenase, polyphenol oxidase, and lysyl oxidase are examples of other enzymes that can cross link proteins. 相似文献
15.
P.K. Ponnuswamy R. Muthusamy P. Manavalan 《International journal of biological macromolecules》1982,4(3):186-190
This study investigates the relationship between the thermal stability of a globular protein and its amino acid composition. The method deals with the relationship between the amino acid compositions and melting points in a set of proteins by computing single-residue and group correlations. Groups of residues are shown to stabilize or destabilize the molecule against temperature. The stabilizing group consists of polar-charged residues and nonpolar residues possessing high surrounding hydrophobicity. The polar-uncharged residues destabilize the molecule against temperature, serine being the most destabilizing residue. A very high cooperativity exists among the stabilizing nonpolar residues suggesting that their characteristic clustering inside the globule may enhance the thermostability of a protein. In small globular proteins which act as single cooperative units, the melting temperature remains mainly a function of amino acid composition, whereas in complex molecules it depends on other factors also. 相似文献
16.
17.
The extraordinary thermal stability of EstA from S. islandicus is independent of post translational modifications 下载免费PDF全文
Casper de Lichtenberg Tam T. T. N. Nguyen Kasper D. Rand Li Huang Qunxin She Kaare Teilum 《Protein science : a publication of the Protein Society》2017,26(9):1819-1827
Enzymes from thermophilic and hyper‐thermophilic organisms have an intrinsic high stability. Understanding the mechanisms behind their high stability will be important knowledge for the engineering of novel enzymes with high stability. Lysine methylation of proteins is prevalent in Sulfolobus, a genus of hyperthermophilic and acidophilic archaea. Both unspecific and temperature dependent lysine methylations are seen, but the significance of this post‐translational modification has not been investigated. Here, we test the effect of eliminating in vivo lysine methylation on the stability of an esterase (EstA). The enzyme was purified from the native host S. islandicus as well as expressed as a recombinant protein in E. coli, a mesophilic host that does not code for any machinery for in vivo lysine methylation. We find that lysine mono methylation indeed has a positive effect on the stability of EstA, but the effect is small. The effect of the lysine methylation on protein stability is secondary to that of protein expression in E. coli, as the E. coli recombinant enzyme is compromised both on stability and activity. We conclude that these differences are not attributed to any covalent difference between the protein expressed in hyperthermophilic versus mesophilic hosts. 相似文献
18.
Matthew S. Wilson Guangjie Shi Thomas Wüst Ying Wai Li David P. Landau 《Molecular simulation》2018,44(12):1025-1030
With the highly simplified hydrophobic-polar model representation of a protein, we can study essential qualitative physics without an unnecessarily large computational overhead. Using Wang-Landau sampling in conjunction with a set of efficient Monte Carlo trial moves, we studied the adsorption of short HP lattice proteins on various simple patterned substrates and in particular for checkered patterned surfaces. A set of single-site mutated HP proteins is used to investigate the role of hydrophobicity of a protein chain and surface pattern for substrates with various pattern cell sizes relative to the protein’s native configuration. For most cases, we found that the adsorption transition occurs at a lower temperature, while the hydrophobic core formation is less affected. The flattening procedure after the HP protein is adsorbed is more sensitive to the change in surface patterns and single-site mutations. These observations stay valid for both strongly and weakly attractive surfaces. 相似文献
19.
Differential scanning calorimetry, circular dichroism, and visible absorption spectrophotometry were employed to elucidate the structural stability of thermophilic phycocyanin derived from Cyanidium caldarium, a eucaryotic organism which contains a nucleus, grown in acidic conditions (pH 3.4) at 54°C. The obtained results were compared with those previously reported for thermophilic phycocyanin derived from Synechococcus lividus, a procaryote containing no organized nucleus, grown in alkaline conditions (pH 8.5) at 52°C. The temperature of thermal unfolding (td) was found to be comparable between C. caldarium (73°C) and S. lividus (74°C) phycocyanins. The apparent free energy of unfolding (ΔG[urea]=0) at zero denaturant (urea) concentration was also comparable: 9.1 and 8.7 kcal/mole for unfolding the chromophore part of the protein, and 5.0 and 4.3 kcal/mole for unfolding the apoprotein part of the protein, respectively. These values of td and ΔG[urea]=0 were significantly higher than those previously reported for mesophilic Phormidium luridum phycocyanin (grown at 25°C). These findings revealed that relatively higher values of td and ΔG[urea]=0 were characteristics of thermophilic proteins. In contrast, the enthalpies of completed unfolding (ΔHd) and the half-completed unfolding (ΔHd)1/2 for C. caldarium phycocyanin were much lower than those for S. lividus protein (89 versus 180 kcal/mole and 62 versus 115 kcal/mole, respectively). Factors contributing to a lower ΔHd in C. caldarium protein and the role of charged groups in enhancing the stability of thermophilic proteins were discusse. 相似文献