首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The skeletal elements of the branchial region are made by neural crest cells, following tissue interactions with the pharyngeal endoderm. Previous transplantation experiments have claimed that the cranial neural crest is morphogenetically prespecified in respect of its branchial skeletal derivatives, that is, that information for the number, size, shape, and position of its individual elements is already determined in these cells when they are still in the neural folds. This positional information would somehow be preserved during delamination from the neural tube and migration into the branchial arches, before being read out as a spatial pattern of chondrogenesis and osteogenesis. However, it now appears that signals from the endoderm are able to specify not only the histogenic differentiation state of neural crest cells but also the identity and orientation of the branchial skeletal elements. It is therefore important to ask whether fine details of branchial skeletal pattern such as those that exist between different species are also governed by extrinsic factors, such as the endoderm, or by the neural crest itself. We have grafted neural crest between duck and quail embryos and show that the shape and size of the resulting skeletal elements is donor derived. The ability to form species-specific patterns of craniofacial skeletal tissue thus appears to be an inherent property of the neural crest, expressed as species-specific responses to endodermal signals.  相似文献   

2.
Smad4 is required to regulate the fate of cranial neural crest cells   总被引:1,自引:0,他引:1  
Ko SO  Chung IH  Xu X  Oka S  Zhao H  Cho ES  Deng C  Chai Y 《Developmental biology》2007,312(1):435-447
Smad4 is the central mediator for TGF-β/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-β/BMP signals utilize Smad-dependent or -independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-β/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-β/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis.  相似文献   

3.
4.
Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.  相似文献   

5.
6.

Background

In vertebrates, the skeletal elements of the jaw, together with the connective tissues and tendons, originate from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Previous studies have shown that neural crest cells migrate in close association with cranial mesoderm and then circumscribe but do not penetrate the core of muscle precursor cells of the branchial arches at early stages of development, thus defining a sharp boundary between neural crest cells and mesodermal muscle progenitor cells. Tendons constitute one of the neural crest derivatives likely to interact with muscle formation. However, head tendon formation has not been studied, nor have tendon and muscle interactions in the head.

Methodology/Principal Findings

Reinvestigation of the relationship between cranial neural crest cells and muscle precursor cells during development of the first branchial arch, using quail/chick chimeras and molecular markers revealed several novel features concerning the interface between neural crest cells and mesoderm. We observed that neural crest cells migrate into the cephalic mesoderm containing myogenic precursor cells, leading to the presence of neural crest cells inside the mesodermal core of the first branchial arch. We have also established that all the forming tendons associated with branchiomeric and eye muscles are of neural crest origin and express the Scleraxis marker in chick and mouse embryos. Moreover, analysis of Scleraxis expression in the absence of branchiomeric muscles in Tbx1−/− mutant mice, showed that muscles are not necessary for the initiation of tendon formation but are required for further tendon development.

Conclusions/Significance

This results show that neural crest cells and muscle progenitor cells are more extensively mixed than previously believed during arch development. In addition, our results show that interactions between muscles and tendons during craniofacial development are similar to those observed in the limb, despite the distinct embryological origin of these cell types in the head.  相似文献   

7.
8.
ADAMTS metalloproteases constitute a family of 19 secreted protein or proteoglycan processing enzymes. ADAMTS9 and its closest mammalian relative, ADAMTS20, are related to gon-1, a metalloprotease required for gonadal morphogenesis in Caenorhabditis elegans. Although expressed at generally low levels in embryonic subectodermal mesenchyme, ADAMTS20 is required for melanoblast colonization of skin. Mutations in Adamts20 cause Belted, one of several white spotting alleles in the mouse. In contrast to Adamts20, we previously showed by Northern blotting that Adamts9 was expressed highly throughout mouse development. Using RNA in situ hybridization, we determined the spatial and temporal regulation of Adamts9 during mouse embryogenesis. At 7.5 dpc Adamts9 is expressed in the allantois, trophoblast, parietal endoderm and decidual tissue. At 9.5 dpc it is expressed in head mesoderm and in the developing heart. From 11.5 to 12.5 dpc, Adamts9 is strongly expressed in posterior mesoderm, in the craniofacial region, ventral body wall and diaphragm. After 14.5 dpc, Adamts9 was highly expressed in the mesenchyme of developing lung, kidney, and mesentery. It is expressed during skeletogenesis, being present from 13.5 dpc in perichondrium, in the proliferation zone of growth plates after 15.5 dpc and it is highly expressed in newly formed bone. It is expressed in vascular endothelium and during formation of the pituitary and cochlea, but expression in the central nervous system is limited to the floor plate of the diencephalon, to the ventricular zone of the cerebral cortex and to the choroid plexus.  相似文献   

9.
10.
The fates of cranial neural crest cells are unique compared to trunk neural crest. Cranial neural crest cells form bone and cartilage and ultimately these cells make up the entire facial skeleton. Previous studies had established that exogenous retinoic acid has effects on neurogenic derivatives of cranial neural crest cells and on segmentation of the hindbrain. In the present study we investigated the role of retinoic acid on the skeletal derivatives of migrating cranial neural crest cells. We wanted to test whether low doses of locally applied retinoic acid could respecify the neural crest-derived, skeletal components of the beak in a reproducible manner. Retinoic acid-soaked beads were positioned at the presumptive mid-hindbrain junction in stage 9 chicken embryos. Two ectopic cartilage elements were induced, the first a sheet of cartilage ventral and lateral to the quadrate and the second an accessory cartilage rod branching from Meckel's cartilage. The accessory rod resembled a retroarticular process that had formed within the first branchial arch domain. In addition the quadrate was often displaced laterally and fused to the retroarticular process. The next day following bead implantation, expression domains of Hoxa2 and Hoxb1 were shifted in an anterior direction up to the mesencephalon and Msx-2 was slightly down-regulated in the hindbrain. Despite down-regulation in neural crest cells, the onset of Msx-2 expression in the facial prominences at stage 18-20 was normal. This correlates with normal distal beak morphology. Focal labeling of neural crest with DiI showed that instead of migrating in a neat group toward the second branchial arch, a cohort of labeled cells from r4 spread anteriorly toward the proximal first arch region. AP-2 expression data confirmed the uninterrupted presence of AP-2-expressing cells from the anterior mesencephalon to r4. The morphological changes can be explained by mismigration of r4 neural crest into the first arch, but at the same time maintenance of their identity. Up-regulation of the Hoxa2 gene in the first branchial arch may have encouraged r4 cells to move in the anterior direction. This combination of events leads to the first branchial arch assuming some of the characteristics of the second branchial arch.  相似文献   

11.
During the Drosophila oogenic processes, Fat facets (Faf), an ubiquitin-specific protease essential for normal development of oocyte and eye, becomes localized at the posterior pole and is incorporated into the pole cells. This is dependent on Oskar, a key factor for pole cell determination, and suggests a role for Faf in germ cell differentiation and development. Here we show that Usp9x, an X-linked ortholog of Faf, is predominantly expressed in both germ cell and supporting cell lineages during mouse gonadal development in stage- and sex-dependent manners. Usp9x was first detected in PGCs at 10.5 days post coitum (dpc), and thereafter its expression both at mRNA and protein levels was enhanced in PGCs of both sexes at 11.5-13.5 dpc. In testis, Usp9x expression rapidly decreased to an undetectable level by 15.5 dpc and after birth to adult, no expression was found in any spermatogenic cells, except for weak expression in Sertoli cells. In the ovary, Usp9x expression in embryonic oocytes was also reduced at the newborn stage, its expression reappeared in oocytes at secondary follicle stage, and its products were highly accumulated in the cytoplasm of Graaffian follicles in adults. Although follicular epithelial cells also expressed Usp9x at a moderate level during postnatal development, its expression was downregulated from early secondary follicle stage. Thus, the present study is not only the first to demonstrate a conserved expression of fat facets in PGCs between mouse and fly, but also sex- and stage-dependent changes of a specific component of the deubiquitylation system during mammalian gonadal development.  相似文献   

12.
During the Drosophila oogenic processes, Fat facets (Faf), an ubiquitin-specific protease essential for normal development of oocyte and eye, becomes localized at the posterior pole and is incorporated into the pole cells. This is dependent on Oskar, a key factor for pole cell determination, and suggests a role for Faf in germ cell differentiation and development. Here we show that Usp9x, an X-linked ortholog of Faf, is predominantly expressed in both germ cell and supporting cell lineages during mouse gonadal development in stage- and sex-dependent manners. Usp9x was first detected in PGCs at 10.5 days post coitum (dpc), and thereafter its expression both at mRNA and protein levels was enhanced in PGCs of both sexes at 11.5-13.5 dpc. In testis, Usp9x expression rapidly decreased to an undetectable level by 15.5 dpc and after birth to adult, no expression was found in any spermatogenic cells, except for weak expression in Sertoli cells. In the ovary, Usp9x expression in embryonic oocytes was also reduced at the newborn stage, its expression reappeared in oocytes at secondary follicle stage, and its products were highly accumulated in the cytoplasm of Graaffian follicles in adults. Although follicular epithelial cells also expressed Usp9x at a moderate level during postnatal development, its expression was downregulated from early secondary follicle stage. Thus, the present study is not only the first to demonstrate a conserved expression of fat facets in PGCs between mouse and fly, but also sex- and stage-dependent changes of a specific component of the deubiquitylation system during mammalian gonadal development.  相似文献   

13.
Neural crest development involves epithelial-mesenchymal transition (EMT), during which epithelial cells are converted into individual migratory cells. Notably, the same signaling pathways regulate EMT function during both development and tumor metastasis. p53 plays multiple roles in the prevention of tumor development; however, its precise roles during embryogenesis are less clear. We have investigated the role of p53 in early cranial neural crest (CNC) development in chick and mouse embryos. In the mouse, p53 knockout embryos displayed broad craniofacial defects in skeletal, neuronal and muscle tissues. In the chick, p53 is expressed in CNC progenitors and its expression decreases with their delamination from the neural tube. Stabilization of p53 protein using a pharmacological inhibitor of its negative regulator, MDM2, resulted in reduced SNAIL2 (SLUG) and ETS1 expression, fewer migrating CNC cells and in craniofacial defects. By contrast, electroporation of a dominant-negative p53 construct increased PAX7(+) SOX9(+) CNC progenitors and EMT/delamination of CNC from the neural tube, although the migration of these cells to the periphery was impaired. Investigating the underlying molecular mechanisms revealed that p53 coordinates CNC cell growth and EMT/delamination processes by affecting cell cycle gene expression and proliferation at discrete developmental stages; disruption of these processes can lead to craniofacial defects.  相似文献   

14.
15.
Signaling molecules belonging to the Fibroblast growth factor (Fgf) family are necessary for directing bud outgrowth during tracheal development in Drosophila and lung development in mouse. A potential inhibitor of the Fgf signaling pathway, called Sprouty, has been identified in Drosophila. We have identified three potential mouse homologues of sprouty. One of them, called Sprouty4, exhibits a very restricted expression pattern. At 8.0 dpc (days post coitum) Sprouty4 is strongly expressed in the primitive streak region. At 9. 5 and 10.5 dpc, Sprouty4 is expressed in the nasal placode, the maxillary and mandibular processes, the otic vesicule, the second branchial arch, in the progress region of the limb buds and the presomitic mesoderm. Sprouty4 expression is also detected in the lateral region of the somites. In the developing lung, Sprouty4 is expressed broadly in the distal mesenchyme.  相似文献   

16.
We have analysed the contributions of neural crest and mesoderm to mammalian craniofacial mesenchyme and its derivatives by cell lineage tracing experiments in mouse embryos, using the permanent genetic markers Wnt1-cre for neural crest and Mesp1-cre for mesoderm, combined with the Rosa26 reporter. At the end of neural crest cell migration (E9.5) the two patterns are reciprocal, with a mutual boundary just posterior to the eye. Mesodermal cells expressing endothelial markers (angioblasts) are found not to respect this boundary; they are associated with the migrating neural crest from the 5-somite stage, and by E9.5 they form a pre-endothelial meshwork throughout the cranial mesenchyme. Mesodermal cells of the myogenic lineage also migrate with neural crest cells, as the branchial arches form. By E17.5 the neural crest-mesoderm boundary in the subectodermal mesenchyme becomes out of register with that of the underlying skeletogenic layer, which is between the frontal and parietal bones. At E13.5 the primordia of these bones lie basolateral to the brain, extending towards the vertex of the skull during the following 4-5 days. We used DiI labelling of the bone primordia in ex-utero E13.5 embryos to distinguish between two possibilities for the origin of the frontal and parietal bones: (1) recruitment from adjacent connective tissue or (2) proliferation of the original primordia. The results clearly demonstrated that the bone primordia extend vertically by intrinsic growth, without detectable recruitment of adjacent mesenchymal cells.  相似文献   

17.
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

18.
Hox genes, neural crest cells and branchial arch patterning.   总被引:6,自引:0,他引:6  
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号