共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Patricia Jumbo-Lucioni William Parkinson Kendal Broadie 《Disease models & mechanisms》2014,7(12):1365-1378
Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP–N-acetylgalactosamine and UDP–N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand levels, which are also corrected by dGALK co-removal and sugarless overexpression. These results reveal synaptomatrix glycosylation losses, altered trans-synaptic signaling pathway components, defective synaptogenesis and impaired coordinated movement in a CG neurological disease model.KEY WORDS: Congenital disorder of glycosylation (CDG), sugarless, Galactokinase, Synaptogenesis, Trans-synaptic signaling, WNT, HSPG, Neuromuscular junction 相似文献
3.
Background
Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology and function as ligand-gated cation channels. Consequently, the involvement of cyclic nucleotides and G proteins in insect odor reception is controversial. Since the heterotrimeric Goα subunit is expressed in Drosophila olfactory receptor neurons, we reasoned that Go acts together with insect odorant receptor cation channels to mediate odor-induced physiological responses. 相似文献4.
Animal studies have been instrumental in providing knowledge about the molecular and neural mechanisms underlying drug addiction. Recently, the fruit fly Drosophila melanogaster has become a valuable system to model not only the acute stimulating and sedating effects of drugs but also their more complex rewarding properties. In this review, we describe the advantages of using the fly to study drug-related behavior, provide a brief overview of the behavioral assays used, and review the molecular mechanisms and neural circuits underlying drug-induced behavior in flies. Many of these mechanisms have been validated in mammals, suggesting that the fly is a useful model to understand the mechanisms underlying addiction. 相似文献
5.
6.
Indik JH Goldman S Gaballa MA 《American journal of physiology. Heart and circulatory physiology》2001,281(4):H1767-H1770
Congestive heart failure (HF) is characterized by inadequate nitric oxide (NO) production in the vasculature. Because NO is degraded by oxygen radicals, we hypothesized that NO is degraded faster in HF from inadequate peripheral arterial antioxidant reserves. HF was induced in male Sprague-Dawley rats by left coronary artery ligation. Vascular endothelial function was evaluated by measuring the NO-mediated vasorelaxation response to acetylcholine (ACh; 10(-9)-10(-4) M) in excised aortas. This was repeated with the free radical generator pyrogallol (20 microM) and again with pyrogallol and superoxide dismutase (SOD; 60 U/ml). Aortic and myocardial SOD activity was also determined. ACh-induced vasorelaxation was reduced in HF (n = 9) compared with normal control rats (n = 11; P < 0.001). Pyrogallol further reduced vasorelaxation in HF: 74 +/- 11% at 10(-4) M ACh versus 58 +/- 10% in normal control rats (P < 0.004). There was a trend (P = 0.06) toward reduced SOD activity in HF aortas. In conclusion, altered NO-dependent vasorelaxation in HF is in part due to excessive degradation of NO and is likely related to reduced vascular SOD activity. 相似文献
7.
Krishnan N Davis AJ Giebultowicz JM 《Biochemical and biophysical research communications》2008,374(2):299-303
Circadian rhythms are fundamental biological phenomena generated by molecular genetic mechanisms known as circadian clocks. There is increasing evidence that circadian synchronization of physiological and cellular processes contribute to the wellness of organisms, curbing pathologies such as cancer and premature aging. Therefore, there is a need to understand how circadian clocks orchestrate interactions between the organism’s internal processes and the environment. Here, we explore the nexus between the clock and oxidative stress susceptibility in Drosophila melanogaster. We exposed flies to acute oxidative stress induced by hydrogen peroxide (H2O2), and determined that mortality rates were dependent on time at which exposure occurred during the day/night cycle. The daily susceptibility rhythm was abolished in flies with a null mutation in the core clock gene period (per) abrogating clock function. Furthermore, lack of per increased susceptibility to H2O2 compared to wild-type flies, coinciding with enhanced generation of mitochondrial H2O2 and decreased catalase activity due to oxidative damage. Taken together, our data suggest that the circadian clock gene period is essential for maintaining a robust anti-oxidative defense. 相似文献
8.
Flavonoids and oxidative stress in Drosophila melanogaster 总被引:1,自引:0,他引:1
Flavonoids are a family of antioxidants that are widely represented in fruits, vegetables, dry legumes, and chocolate, as well as in popular beverages, such as red wine, coffee, and tea. The flavonoids chlorogenic acid, kaempferol, quercetin and quercetin 3β-d-glycoside were investigated for genotoxicity using the wing somatic mutation and recombination test (SMART). This test makes use of two recessive wing cell markers: multiple wing hairs (mwh) and flare (flr(3)), which are mutations located on the left arm of chromosome 3 of Drosophila melanogaster and are indicative of both mitotic recombination and various types of mutational events. In order to test the antioxidant capacities of the flavonoids, experiments were conducted with various combinations of oxidants and polyphenols. Oxidative stress was induced using hydrogen peroxide, the Fenton reaction and paraquat. Third-instar transheterozygous larvae were chronically treated for all experiments. The data obtained in this study showed that, at the concentrations tested, the flavonoids did not induce somatic mutations or recombination in D. melanogaster with the exception of quercetin, which proved to be genotoxic at only one concentration. The oxidants hydrogen peroxide and the Fenton reaction did not induce mutations in the wing somatic assay of D. melanogaster, while paraquat and combinations of flavonoids produced significant numbers of small single spots. Quercetin 3β-d-glycoside mixed with paraquat was shown to be desmutagenic. Combinations of the oxidants with the other flavonoids did not show any antioxidant activity. 相似文献
9.
It is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMPs) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild-type flies to survive much better in hyperoxia. In this study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with AMP overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS levels after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that 1) AMPs play an important role in tolerance to oxidant stress, 2) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and 3) this change in redox balance plays an important role in survival in hyperoxia. 相似文献
10.
《Redox report : communications in free radical research》2013,18(3):126-132
AbstractObjectivesPatients with chronic kidney disease have impaired muscle metabolism, resulting in muscle atrophy. Oxidative stress has previously been identified as a significant contributor to muscle atrophy in other populations, but the contribution in chronic kidney disease is unknown. The aim of this study was to investigate the association between oxidative stress, grip strength, and lean mass in patients with chronic kidney disease.MethodsThis is a cross-sectional study of 152 participants with stage 3 or 4 chronic kidney disease. Outcome measures include grip strength, lean mass, plasma total F2-isoprostanes, inflammation, peak oxygen uptake, and standard clinical measures.ResultsThirty four (22.4%) chronic kidney disease patients had elevated oxidative stress levels (plasma F2-isoprostanes >250 pg/ml), with 82% of patients below age-predicted grip strength normative values. There was a significant negative association between plasma F2-isoprostanes and grip strength (r = ?0.251) and lean mass (r = ?0.243). There were no associations with inflammation markers. Multiple linear regression identified plasma F2-isoprostanes as a significant predictor of grip strength independent of other predictors: sex, diabetes status, body mass index, body fat percent, and phosphate (adjusted r2 = 69.5, P < 0.001).DiscussionPlasma F2-isoprostanes were independently associated with reduced strength in chronic kidney disease patients. 相似文献
11.
《Current biology : CB》2023,33(8):1613-1623.e5
12.
13.
14.
Chemoreception is a principle modality by which organisms gain information from their environment, and extensive variation in odor-mediated behavior has been documented within and among species. To examine the mechanisms by which sensory systems mediate these responses, we ask to what extent variation in Drosophila melanogaster odorant receptor genes contributes to variation in odor-mediated behavior. Significant differences in behavioral responses to structurally similar odorants, methyl hexanoate and ethyl hexanoate, were found in a natural population. Polymorphisms in 3 genomic regions (Or22a/Or22b, Or35a, and Or47a) were identified and associated with variation in behavior to these esters. Overall similarity in association profiles for both odorants was observed, except for Or47a in which polymorphisms were associated solely with variation in responses to ethyl hexanoate. Our analyses were then extended to examine polymorphisms in 3 odorant receptors previously reported to contribute to variation in olfactory behavior for the chemically distinct odorants benzaldehyde and acetophenone. Two Or10a polymorphisms were associated with variation in response to ethyl hexanoate. Finally, differences in Or35a and Or47a expression were associated with variation in responses to ethyl hexanoate. These results demonstrate that the genetic variation at the peripheral sensory stage plays a role in mediating differences in odor-mediated behavior. 相似文献
15.
16.
Pre-eclampsia is a hypertensive disorder of pregnancy in which enzymatic antioxidant defenses fail and tissues are injured. This prospective case-control study evaluated whether pre-eclamptic women and their newborns show higher degrees of oxidative stress than normal pregnancies and sought to determine if this stress is related to clinical severity. Forty-four pre-eclamptic and thirty healthy pregnant women attending two hospitals in Valparaíso, Chile, were studied. The following plasmatic variables of antioxidant capacity were evaluated: glutathione peroxidase activity (GPx), total antioxidant capacity measured by oxidation of ABTS substrate (2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), and superoxide dismutase activity (SOD). malondialdehide (MDA) was measured to evaluate lipoperoxidation. The evaluation was performed at diagnosis of pre-eclampsia, delivery, 30 days and 120 days post delivery. Newborns were studied at delivery through umbilical cord blood samples. Our analysis shows that antioxidant enzyme activity (SOD, GPx, ABTS) was significantly decreased, while lipoperoxidation (MDA) was increased in both pre-eclamptic groups compared to normal pregnant women (p<0.01). Statistically significant difference was found between mild and severe pre-eclamptic groups (p<0.01), for all biochemical markers studied. Therefore, the clinical severity of this pathology is closely related to the degree of oxidative stress. 相似文献
17.
Oxidative stress is seen in various metabolic disorders for unknown reasons. Oxidative stress is defined as an imbalance between pro-oxidant and antioxidant status in favor of the former. This study investigated whether oxidative stress exists in phenylketonuria (PKU) using the BTBR-Pah(enu2) animal model for PKU. Animals (14-24 weeks old) were sacrificed and brain and red blood cells (RBCs) were obtained aseptically. The lipid peroxidation by-product, evaluated as malondialdehyde (MDA), was significantly higher in the brains and RBCs of PKU animals (n = 6) than in controls (n = 6). Glutathione/glutathione disulfide, a good indicator for tissue thiol status, was significantly decreased both in the brains and RBCs. Some antioxidant enzymes were also analyzed in RBCs, including glucose-6-phosphate dehydrogenase (G6PD), which provides the RBC's main reducing power, reduced nicotinamide adenine dinucleotide phosphate (NADPH), and catalase detoxifies H2O2 by catalyzing its reduction to O2 and H2O. Both catalase and G6PD were significantly increased in the RBCs of PKU animals. 相似文献
18.
Papaconstantinou M Wu Y Pretorius HN Singh N Gianfelice G Tanguay RM Campos AR Bédard PA 《Molecular and cellular biology》2005,25(22):9960-9972
Menin, the product of the multiple endocrine neoplasia type I gene, has been implicated in several biological processes, including the control of gene expression and apoptosis, the modulation of mitogen-activated protein kinase pathways, and DNA damage sensing or repair. In this study, we have investigated the function of menin in the model organism Drosophila melanogaster. We show that Drosophila lines overexpressing menin or an RNA interference for this gene develop normally but are impaired in their response to several stresses, including heat shock, hypoxia, hyperosmolarity and oxidative stress. In the embryo subjected to heat shock, this impairment was characterized by a high degree of developmental arrest and lethality. The overexpression of menin enhanced the expression of HSP70 in embryos and interfered with its down-regulation during recovery at the normal temperature. In contrast, the inhibition of menin with RNA interference reduced the induction of HSP70 and blocked the activation of HSP23 upon heat shock, Menin was recruited to the Hsp70 promoter upon heat shock and menin overexpression stimulated the activity of this promoter in embryos. A 70-kDa inducible form of menin was expressed in response to heat shock, indicating that menin is also regulated in conditions of stress. The induction of HSP70 and HSP23 was markedly reduced or absent in mutant embryos harboring a deletion of the menin gene. These embryos, which did not express the heat shock-inducible form of menin, were also hypersensitive to various conditions of stress. These results suggest a novel role for menin in the control of the stress response and in processes associated with the maintenance of protein integrity. 相似文献
19.
Reactive oxygen species (ROS) are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB). We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease. 相似文献
20.
Papaconstantinou M Pepper AN Wu Y Kasimer D Westwood T Campos AR Bédard PA 《PloS one》2010,5(11):e14049