首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cell chymase, a chymotrypsin-like neutral protease, can proteolyze HDL3. Here we studied the ability of rat and human chymase to proteolyze discoidal pre beta-migrating reconstituted HDL particles (rHDLs) containing either apolipoprotein A-I (apoA-I) or apoA-II. Both chymases cleaved apoA-I in rHDL at identical sites, either at the N-terminus (Tyr18 or Phe33) or at the C-terminus (Phe225), so generating three major truncated polypeptides that remained bound to the rHDL. The cleavage sites were independent of the size of the rHDL particles, but small particles were more susceptible to degradation than bigger ones. Chymase-induced truncation of apoA-I yielded functionally compromised rHDL with reduced ability to promote cellular cholesterol efflux. In sharp contrast to apoA-I, apoA-II was resistant to degradation. However, when apoA-II was present in rHDL that also contained apoA-I, it was degraded by chymase. We conclude that chymase reduces the ability of apoA-I in discoidal rHDL particles to induce cholesterol efflux by cleaving off either its amino- or carboxy-terminal portion. This observation supports the concept that limited extracellular proteolysis of apoA-I is one pathophysiologic mechanism leading to the generation and maintenance of foam cells in atherosclerotic lesions.  相似文献   

2.
Abstract

Although chymases are known to exhibit species differences in regard to angiotensin (Ang) II generation and degradation, their properties have never been compared under the same experimental conditions. We analyzed the processing of Ang I by chymases of a variety of species (human chymase, dog chymase, hamster chymase-1, rat mast cell protease-1 [rMCP-1], mouse mast cell protease-4 [mMCP-4]) at physiological ionic strength and under neutral pH conditions. Human chymase generated Ang II from Ang I without further degradation, whereas the chymases of other species generated Ang II, followed by degradation at the Tyr4-Ile5 site in a time-dependent manner. Kinetic analysis showed that in terms of Ang II generating activity (analyzed by cleavage of the Phe8-His9 bond using the model peptide Ang, Ile5-His6-Pro7-Phe8-His9-Leu10), the chymases ranked as follows:dog > human > hamster > mouse > rat (kcat/Km: 18, 11, 0.69, 0.059, 0.030 μ M? 1min? 1), and that in terms of Ang II degrading activity (i.e., cleavage of the Tyr4-Ile5 bond of Ang II), the order was hamster > rat > mouse > dog (kcat/Km: 5.4, 4.8, 0.39, 0.29 μ M?1min?1). These results suggest species differences in the contribution of chymases to local Ang II generation and degradation.  相似文献   

3.
Chymotrypsin-like serine proteases are found in high abundance in mast cell granules. By site-directed mutatgenesis, we have previously shown that basic amino acids in positions 143 and 192 (Arg and Lys respectively) of the human mast cell chymase are responsible for an acidic amino acid residue preference in the P2'' position of substrates. In order to study the influence of these two residues in determining the specificity of chymase inhibitors, we have synthesized five different potent inhibitors of the human chymase. The inhibitory effects of these compounds were tested against the wild-type enzyme, against two single mutants Arg143Gln and Lys192Met and against a double mutant, Arg143Gln+Lys192Met. We observed a markedly reduced activity of all five inhibitors with the double mutant, indicating that these two basic residues are involved in conferring the specificity of these inhibitors. The single mutants showed an intermediate phenotype, with the strongest effect on the inhibitor by the mutation in Lys192. The Lys192 and the double mutations also affected the rate of cleavage of angiotensin I but did not seem to affect the specificity in the cleavage of the Tyr4-Ile5 bond. A more detailed knowledge about which amino acids that confer the specificity of an enzyme can prove to be of major importance for development of highly specific inhibitors for the human chymase and other medically important enzymes.  相似文献   

4.
Abstract

Human urodilatin (residues 95–126) and atrial natriuretic factor (residues 99–126, based on ANF prohor-mone sequence) were incubated separately with three proteases, thrombin, angiotensin converting enzyme (ACE), and neutral endopeptidase 3.4.24.11 (NEP). Thrombin cleaved urodilatin on the carboxyl side of arginine98 to yield ANF but under the same conditions did not cleave h-ANF. Neither urodilatin nor ANF was cleaved by ACE. ANF was rapidly degraded by NEP resulting in a major product cleaved between amino acid residues Cysl05 and Phe106. Urodilatin was also cleaved by NEP and the amino acid sequencing of the cleaved product revealed the site of cleavage to be the same Cys105-Phe106 site as for ANF with a second cleavage site at Gly118-Leu119. However, cleavage of urodilatin by NEP proceeded much more slowly when compared to ANF. A comparison of the affinities of ANF and urodilatin for purified NEP from rabbit kidney revealed Km values of 11.7 and 3.1 μM, respectively. The turnover rates (kcat/Km) for urodilatin and h-ANF with NEP were 4.6 and 37.3 min?1 μM?1, respectively. Thus, urodilatin is much less efficiently hydrolyzed by purified NEP than is ANF. The four residue extension at the N-terminus of urodilatin may be important for protection against rapid biological inactivation.  相似文献   

5.
The specificities of extracellular and ribosomal serine proteinase from Bacillus natto, a food microorganism, were investigated. Both proteins have highly restricted and characteristic specificities. With the extracellular serine proteinase, initial cleavage site was observed at Leu15-Tyr16, secondary site at Ser9-His10 and additional cleavage sites at Gln4-His5 and His5-Leu6 in the oxidized insulin B-chain. Hydrolysis of proangiotensin with the extracellular serine proteinase was observed primarily at Phe8-His9 and secondary at Tyr4-Ile5. The extracellular serine proteinase has a Km of 0.08 mM and kcat of 3 s−1 for angiotensin hydrolysis. With the ribosomal proteinase, initial cleavage site of the oxidized insulin B-chain was observed at Leu15-Tyr16 and additional cleavage site at Phe24-Phe25. Hydrolysis of proangiotensin was observed at Tyr4-Ile5 bond with the ribosomal proteinase.  相似文献   

6.
We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr166-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr166-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼8% of total apoA-I within the artery wall but was nearly undetectable (>100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr166-apoA-I existed as a lipid-poor lipoprotein with <3% recovered within the HDL-like fraction (d = 1.063–1.21). NO2-Tyr166-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr166-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr166 is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall.  相似文献   

7.
Abstract

Melanin‐concentrating hormone (MCH) is a neuropeptide occurring in all vertebrates and some invertebrates and is now known to stimulate pigment aggregation in teleost melanophores and food‐intake in mammals. Whereas the two MCH receptor subtypes hitherto cloned, MCH‐R1 and MCH‐R2, are thought to mediate mainly the central effects of MCH, the MCH‐R on pigment cells has not yet been identified, although in some studies MCH‐R1 was reported to be expressed by human melanocytes and melanoma cells. Here we present data of a structure‐activity study in which 12 MCH peptides were tested on rat MCH‐R1 and mouse B16 melanoma cell MCH‐R, by comparing receptor binding affinities and biological activities. For receptor binding analysis with HEK‐293 cells expressing rat MCH‐R1 (SLC‐1), the radioligand was [125I]–[Tyr13]‐MCH with the natural sequence. For B16 cells (F1 and G4F sublines) expressing B16 MCH‐R, the analog [125I]–[D‐Phe13, Tyr19]‐MCH served as radioligand. The bioassay used for MCH‐R1 was intracellular Ca2+ mobilization quantified with the FLIPR instrument, whereas for B16 MCH‐R the signal determined was MAP kinase activation. Our data show that some of the peptides displayed a similar relative increase or decrase of potency in both cell types tested. For example, linear MCH with Ser residues at positions 7 and 16 was almost inactive whereas a slight increase in side‐chain hydrophilicity at residues 4 and 8, or truncation of MCH at the N‐terminus by two residues hardly changed binding affinity or bioactivity. On the other hand, salmonic MCH which also lacks the first two residues of the mammalian sequence but in addition has different residues at positions 4, 5, 9, and 18 exhibited a 5‐ to 10‐fold lower binding activity than MCH in both cell systems. A striking difference in ligand recognition between MCH‐R1 and B16 MCH‐R was however observed with modifications at position 13 of MCH: whereas L‐Phe13 in [Phe13, Tyr19]‐MCH was well tolerated by both MCH‐R1 and B16 MCH‐R, change of configuration to D‐Phe13 in [D‐Phe13, Tyr19]‐MCH or [D‐Phe13]‐MCH led to a complete loss of biological activity and to a 5‐ to 10‐fold lower binding activity with MCH‐R1. By contrast, the D‐Phe13 residue increased the affinity of [D‐Phe13, Tyr19]‐MCH to B16 MCH‐R about 10‐fold and elicited MAP kinase activation as observed with [Phe13, Tyr19]‐MCH or MCH. These data demonstrate that ligand recognition by B16 MCH‐R differs from that of MCH‐R1 in several respects, indicating that the B16 MCH‐R represents an MCH‐R subtype different from MCH‐R1.  相似文献   

8.
β-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin AT1 receptor-bound β-arrestin 1 is cleaved after Phe388 upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced β-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of β-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of β-arrestin 1 induced conformational changes and the cleavage of β-arrestin 1 without angiotensin AT1 receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged β-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of β-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced β-arrestin cleavage.  相似文献   

9.
Vimelysin is a novel alcohol resistant metalloproteinase from Vibrio sp. T1800. The substrate specificity of vimelysin was studied by using natural and furylacryloyl dipeptide substrates. Vimelysin cleaved mainly Pro7-Phe8 bond and slightly Tyr4-Ile5 bond in human angiotensin I. Vimelysin also cleaved mainly Phe24-Phe25 and Tyr16-Leu17 bonds, and slightly His5-Leu6, His10-Leu11, Ala14-Leu15, and Gly23-Phe24 bonds in oxidized insulin B-chain. The substrate specificity of vimelysin, by using furylacryloyl (Fua) dipeptides were also studied. The ratio of kcat/Km for Fua-Gly-Phe-NH2/Fua-Gly-Leu-NH2, Fua-Phe-Leu-NH2/Fua-Gly-Leu-NH2, and Fua-Phe-Phe-NH2/Fua-Gly-Leu-NH2 were 15.9, 27.8, and 59.0, respectively. These results indicate that vimelysin easily recognizes phenylalanine in P1′ positions, which is different from thermolysin.  相似文献   

10.
《BBA》2023,1864(3):148979
In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for the Photosystem II (PSII) D1 subunit that interacts with most of the main cofactors involved in the electron transfers. Recently, the 3D crystal structures of both PsbA2-PSII and PsbA3-PSII have been solved [Nakajima et al., J. Biol. Chem. 298 (2022) 102668.]. It was proposed that the loss of one hydrogen bond of PheD1 due to the D1-Y147F exchange in PsbA2-PSII resulted in a more negative Em of PheD1 in PsbA2-PSII when compared to PsbA3-PSII. In addition, the loss of two water molecules in the Cl-1 channel was attributed to the D1-P173M substitution in PsbA2-PSII. This exchange, by narrowing the Cl-1 proton channel, could be at the origin of a slowing down of the proton release. Here, we have continued the characterization of PsbA2-PSII by measuring the thermoluminescence from the S2QA/DCMU charge recombination and by measuring proton release kinetics using time-resolved absorption changes of the dye bromocresol purple. It was found that i) the Em of PheD1/PheD1 was decreased by ∼30 mV in PsbA2-PSII when compared to PsbA3-PSII and ii) the kinetics of the proton release into the bulk was significantly slowed down in PsbA2-PSII in the S2TyrZ to S3TyrZ and S3TyrZ → (S3TyrZ)’ transitions. This slowing down was partially reversed by the PsbA2/M173P mutation and induced by the PsbA3/P173M mutation thus confirming a role of the D1-173 residue in the egress of protons trough the Cl-1 channel.  相似文献   

11.
The apoA-I molecule adopts a two-domain tertiary structure and the properties of these domains modulate the ability to form HDL particles. Thus, human apoA-I differs from mouse apoA-I in that it can form smaller HDL particles; the C-terminal α-helix is important in this process and human apoA-I is unusual in containing aromatic amino acids in the non-polar face of this amphipathic α-helix. To understand the influence of these aromatic amino acids and the associated high hydrophobicity, apoA-I variants were engineered in which aliphatic amino acids were substituted with or without causing a decrease in overall hydrophobicity. The variants human apoA-I (F225L/F229A/Y236A) and apoA-I (F225L/F229L/A232L/Y236L) were compared to wild-type (WT) apoA-I for their abilities to (1) solubilize phospholipid vesicles and form HDL particles of different sizes, and (2) mediate cellular cholesterol efflux and create nascent HDL particles via ABCA1. The loss of aromatic residues and concomitant decrease in hydrophobicity in apoA-I (F225L/F229A/Y236A) has no effect on protein stability, but reduces by a factor of about three the catalytic efficiencies (Vmax/Km) of vesicle solubilization and cholesterol efflux; also, relatively large HDL particles are formed. With apoA-I (F225L/F229L/A232L/Y236L) where the hydrophobicity is restored by the presence of only leucine residues in the helix non-polar face, the catalytic efficiencies of vesicle solubilization and cholesterol efflux are similar to those of WT apoA-I; this variant forms smaller HDL particles. Overall, the results show that the hydrophobicity of the non-polar face of the C-terminal amphipathic α-helix plays a critical role in determining apoA-I functionality but aromatic amino acids are not required. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

12.
Summary A semi-rigid structural analog of [Leu5] enkephalin, possessing the azo-bridge between Tyr1 and Phe4 residues, was synthesized, along with two other linear enkephalin analogs: [4′-amino Phe4] enkephalin and [4′hydroxyphenyl/-azo Phe4] enkephalin. The results of the determination of the analgesic activity of the synthesized compounds suggest that the biologically active conformation of the enkephalin molecule should be such that both aromatic rings, Tyr1 and Phe4, are situated in close proximity.  相似文献   

13.
《BBA》2020,1861(5-6):148176
Electrochromic band-shifts have been investigated in Photosystem II (PSII) from Thermosynechoccocus elongatus. Firstly, by using Mn-depleted PsbA1-PSII and PsbA3-PSII in which the QX absorption of PheD1 differs, a band-shift in the QX region of PheD2 centered at ~ 544 nm has been identified upon the oxidation, at pH 8.6, of TyrD. In contrast, a band-shift due to the formation of either QA•- or TyrZ is observed in PsbA3-PSII at ~ 546 nm, as expected with E130 H-bonded to PheD1 and at ~ 544 nm as expected with Q130 H-bonded to PheD1. Secondly, electrochromic band-shifts in the Chla Soret region have been measured in O2-evolving PSII in PsbA3-PSII, in the PsbA3/H198Q mutant in which the Soret band of PD1 is blue shifted and in the PsbA3/T179H mutant. Upon TyrZQA•- formation the Soret band of PD1 is red shifted and the Soret band of ChlD1 is blue shifted. In contrast, only PD1 undergoes a detectable S-state dependent electrochromism. Thirdly, the time resolved S-state dependent electrochromism attributed to PD1 is biphasic for all the S-state transitions except for S1 to S2, and shows that: i) the proton release in S0 to S1 occurs after the electron transfer and ii) the proton release and the electron transfer kinetics in S2 to S3, in T. elongatus, are significantly faster than often considered. The nature of S2TyrZ is discussed in view of the models in the literature involving intermediate states in the S2 to S3 transition.  相似文献   

14.
Abstract: In search of the molecular mechanisms underlying the broad substrate and inhibitor specificities of butyrylcholinesterase (BuChE), we employed site-directed mutagenesis to modify the catalytic triad residue Ser198, the acyl pocket Leu286 and adjacent Phe329 residues, and Met437 and Tyr440 located near the choline binding site. Mutant proteins were produced in microinjected Xenopus oocytes, and Km values towards butyrylthiocholine and IC50 values for the organophosphates diisopropylfluorophosphonate (DFP), diethoxyphosphinylthiocholine iodide (echothiophate), and tetraisopropylpyrophosphoramide (iso-OMPA) were determined. Substitution of Ser198 by cysteine and Met437 by aspartate nearly abolished activity, and other mutations of Ser198 completely abolished it. Tyr440 and Leu286 mutants remained active, but with higher Km and IC50 values. Rates of inhibition by DFP were roughly parallel to IC50 values for several Leu286 mutants. Both Km and IC50 values increased for Leu286 mutants in the order Asp < Gln < Lys. In contrast, cysteine, leucine, and glutamine mutants of Phe329 displayed unmodified Km values toward butyrylthiocholine, but up to 10-fold decreased IC50 values for DFP, iso-OMPA, and echothiophate. These findings add Tyr440 and Phe329 to the list of residues interacting with substrate and ligands, demonstrate plasticity in the active site region of BuChE, and foreshadow the design of recombinant BuChEs with tailored scavenging properties.  相似文献   

15.
Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1·Cullin 1·F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206–215 and 216–225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys48 and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe206, Tyr207, Tyr210, and Tyr211) are probably positioned in the vicinity of ubiquitin C-terminal residue Val70. Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val70 by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1–215) but not Cdc34(1–200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IκBα ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe206/Tyr207, Tyr210/Tyr211) in conjugation, with Tyr210 exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr210 was required for the transfer of the donor ubiquitin to a receptor lysine on either IκBα or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.  相似文献   

16.
Cleavage of Rabbit Myelin Basic Protein by Pepsin   总被引:13,自引:13,他引:0  
Rapid cleavage of bovine and guinea pig myelin basic proteins by pepsin at pH 6.0 is limited to the Phe-Phe bond in the middle of the molecule. In the rabbit protein, however, rapid cleavages occur elsewhere in addition to the Phe87-Phe88 bond in regions in which there are amino acid substitutions. Rapid cleavage occurs at the Leu151-Phe152 bond, at which Ile-151 has been replaced by Leu, the residue that actually contributes the scissile bond. Rapid cleavages occur at the Phe44-Phe45 and Leu109-Ser110 bonds, which in the bovine and guinea pig proteins are relatively resistant under the experimental conditions (pH 6.0). The increased susceptibility of these bonds in the rabbit protein appears to be related to the replacement of Gly-46 by Ser and the change in the sequence immediately NH2-terminal to Leu-109, from Leu-Ser to Thr-Val. These cleavages of the rabbit protein at the four very susceptible bonds have permitted us to isolate peptides (1-44), (45-87), (88-109), (110-151), and (152-168) in high yield. We have also isolated peptides (88-151), (1-14), and (15-44) in low yield; the latter two result from limited cleavage at the relatively resistant Tyr14Leu15 bond. Peptide (88-109) has been chromatographically resolved into species differing in the degree of methylation of Arg-105; this resolution is thought to result from differences in hydrogen bonding ability of the guanidinium groups.  相似文献   

17.
A basic proteinase was purified and characterized from the venom of Habu (Trimeresurus flavoviridis). Its molecular weight, isoelectric point and optimum pH were approx. 24 000, 9.2 and 9, respectively. Susceptibility to several reagents was examined. The proteinase had endopeptidase activity cleaving the Gly-Leu bond in synthetic peptides but no exopeptidase activity. It did not hydrolyze a peptide, Z-Gly-Pro-Leu-Gly-Pro, which had been a good substrate for the major proteinase in the venom. The proteinase cleaved oxidized insulin B chain at five positions: His10-Leu11, Ala14-Leu15, Tyr16-Leu17, Gly23-Phe24 and Phe24-Phe25. From the disappearance of intermediate peptides and the peptides accumulated, the order and the intensity of cleavage of these positions were determined, and the substrate specificity was compared with those hitherto described for hemorrhagic and nonhemorrhagic venom proteinases.  相似文献   

18.
The vibrational structures of Nociceptin (FQ), its short bioactive fragments, and specifically‐modified [Tyr1]FQ (1‐6), [His1]FQ (1‐6), and [His1,4]FQ (1‐6) fragments were characterized. We showed that in the solid state, all of the aforementioned peptides except FQ adopt mainly turn and disordered secondary structures with a small contribution from an antiparallel β‐sheet conformation. FQ (1‐11), FQ (7‐17) [His1]FQ (1‐6), and [His1,4]FQ (1‐6) have an α‐helical backbone arrangement that could also slightly influence their secondary structure. The adsorption behavior of these peptides on a colloidal silver surface in an aqueous solution (pH = ~8.3) was investigated by means of surface‐enhanced Raman scattering (SERS). All of the peptides, excluding FQ (7‐17), chemisorbed on the colloidal silver surfaces through a Phe4 residue, which for FQ, FQ (1‐11), FQ (1‐6), [Tyr1]FQ (1‐6), and [His1]FQ (1‐6) lies almost flat on this surface, while for FQ (1‐13) and FQ (1‐13)NH2 adopts a slightly tilted orientation with respect to the surface. The Tyr1 residue in [Tyr1]FQ (1‐6) does not interact with the colloidal silver surface, suggesting that the Tyr1 and Phe4 side chains are located on the opposite sides of the peptide backbone, which can be also true for His1 and Phe4 in [His1]FQ (1‐6). The lone pair of electrons on the oxygen atom of the ionized carbonyl group of FQ (1‐13) and FQ (7‐17) appears to be coordinated to the colloidal silver nanoparticles, whereas in the case of the remaining peptides, it only assists in the adsorption process, similar to the ? NH2 group. We also showed that upon adsorption, the secondary structure of these peptides is altered. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1039–1054, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
The temperature dependence of the partition of a neuropeptide, Substance P (SP), and its [Tyr8] analogue in a widely used membrane mimic, dodecylphosphocholine micelles, was studied by using a pulsed field gradient nmr diffusion technique. The partition coefficient was found to decrease when the temperature is increased, indicating a favorable (negative) enthalpy change upon partitioning of the peptides. Thermodynamic functions of the partitioning were determined. The enthalpy of partition ΔHpart, was found to be in the −2.5 to −3.0 kcal/mol range, which is between 2 and 3 times higher than the entropic term −TΔSpart. The free energy of partitioning is consistent with a model in which the SP peptides interact with the micelles mainly through the hydrophobic side chains of the residues Phe7, Phe8 (or Tyr8), Leu10, and Met11, and without the insertion of a major portion of the peptide into the hydrophobic core of the micelles. © 1998 John Wiley & Sons, Inc. Biopoly 45: 395–403, 1998  相似文献   

20.
The specificity and mode of action ofAspergillus sojae carboxyl proteinase I were investigated with the oxidized B-chain of insulin.A. sojae carboxyl proteinase I hydrolyzed primarily two peptide bonds in the oxidized B-chain of insulin, the Leu15-Tyr16 bond and the Phe24-Phe25 bond. Additional cleavage of the bond Tyr16-Leu17 was also noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号