首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work has shown that large amplitude negative periods in the local field potential (nLFPs) are able to spread in saltatory manner across large distances in the cortex without distortion in their temporal structure forming 'coherence potentials'. Here we analysed subdural electrocorticographic (ECoG) signals recorded at 59 sites in the sensorimotor cortex in the left hemisphere of a human subject performing a simple visuomotor task (fist clenching and foot dorsiflexion) to understand how coherence potentials arising in the recordings relate to sensorimotor behavior. In all behaviors we found a particular coherence potential (i.e. a cascade of a particular nLFP wave pattern) arose consistently across all trials with temporal specificity. During contrateral fist clenching, but not the foot dorsiflexion or ipsilateral fist clenching, the coherence potential most frequently originated in the hand representation area in the somatosensory cortex during the anticipation and planning periods of the trial, moving to other regions during the actual motor behavior. While these 'expert' sites participated more consistently, other sites participated only a small fraction of the time. Furthermore, the timing of the coherence potential at the hand representation area after onset of the cue predicted the timing of motor behavior. We present the hypothesis that coherence potentials encode information relevant for behavior and are generated by the 'expert' sites that subsequently broadcast to other sites as a means of 'sharing knowledge'.  相似文献   

2.
Kajikawa Y  Schroeder CE 《Neuron》2011,72(5):847-858
Local field potentials (LFPs) are of growing importance in neurophysiological investigations. LFPs supplement action potential recordings by indexing activity relevant to EEG, magnetoencephalographic, and hemodynamic (fMRI) signals. Recent reports suggest that LFPs reflect activity within very small domains of several hundred micrometers. We examined this conclusion by comparing LFP, current source density (CSD), and multiunit activity (MUA) signals in macaque auditory cortex. Estimated by frequency tuning bandwidths, these signals' "listening areas" differ systematically with an order of MUA?< CSD?< LFP. Computational analyses confirm that observed LFPs receive local contributions. Direct measurements indicate passive spread of LFPs to sites more than a centimeter from their origins. These findings appear to be independent of the frequency content of the LFP. Our results challenge the idea that LFP recordings typically integrate over extremely circumscribed local domains. Rather, LFPs appear as a mixture of local potentials with "volume conducted" potentials from distant sites.  相似文献   

3.
Gilja V  Moore T 《Neuron》2007,55(5):684-686
The greater spatial coherence of local field potentials (LFPs) compared with that of spiking activity has been attributed to frequency-dependent propagation of signals through the cortical medium. However, in this issue of Neuron, Logothetis and colleagues show that signal propagation within cortex is largely unbiased across different frequencies, thus suggesting a more functional and interpretable basis of LFP coherence.  相似文献   

4.
During anesthesia, slow-wave sleep and quiet wakefulness, neuronal membrane potentials collectively switch between de- and hyperpolarized levels, the cortical UP and DOWN states. Previous studies have shown that these cortical UP/DOWN states affect the excitability of individual neurons in response to sensory stimuli, indicating that a significant amount of the trial-to-trial variability in neuronal responses can be attributed to ongoing fluctuations in network activity. However, as intracellular recordings are frequently not available, it is important to be able to estimate their occurrence purely from extracellular data. Here, we combine in vivo whole cell recordings from single neurons with multi-site extracellular microelectrode recordings, to quantify the performance of various approaches to predicting UP/DOWN states from the deep-layer local field potential (LFP). We find that UP/DOWN states in deep cortical layers of rat primary auditory cortex (A1) are predictable from the phase of LFP at low frequencies (< 4 Hz), and that the likelihood of a given state varies sinusoidally with the phase of LFP at these frequencies. We introduce a novel method of detecting cortical state by combining information concerning the phase of the LFP and ongoing multi-unit activity.  相似文献   

5.

Background

The current development of brain-machine interface technology is limited, among other factors, by concerns about the long-term stability of single- and multi-unit neural signals. In addition, the understanding of the relation between potentially more stable neural signals, such as local field potentials, and motor behavior is still in its early stages.

Methodology/Principal Findings

We tested the hypothesis that spatial correlation patterns of neural data can be used to decode movement target direction. In particular, we examined local field potentials (LFP), which are thought to be more stable over time than single unit activity (SUA). Using LFP recordings from chronically implanted electrodes in the dorsal premotor and primary motor cortex of non-human primates trained to make arm movements in different directions, we made the following observations: (i) it is possible to decode movement target direction with high fidelity from the spatial correlation patterns of neural activity in both primary motor (M1) and dorsal premotor cortex (PMd); (ii) the decoding accuracy of LFP was similar to the decoding accuracy obtained with the set of SUA recorded simultaneously; (iii) directional information varied with the LFP frequency sub-band, being greater in low (0.3–4 Hz) and high (48–200 Hz) frequency bands than in intermediate bands; (iv) the amount of directional information was similar in M1 and PMd; (v) reliable decoding was achieved well in advance of movement onset; and (vi) LFP were relatively stable over a period of one week.

Conclusions/Significance

The results demonstrate that the spatial correlation patterns of LFP signals can be used to decode movement target direction. This finding suggests that parameters of movement, such as target direction, have a stable spatial distribution within primary motor and dorsal premotor cortex, which may be used for brain-machine interfaces.  相似文献   

6.
The cortical local field potential (LFP) is a summation signal of excitatory and inhibitory dendritic potentials that has recently become of increasing interest. We report that LFP signals in the parietal reach region (PRR) of the posterior parietal cortex of macaque monkeys have temporal structure that varies with the type of planned or executed motor behavior. LFP signals from PRR provide better decode performance for reaches compared to saccades and have stronger coherency with simultaneously recorded spiking activity during the planning of reach movements than during saccade planning. LFP signals predict the animal's behavioral state (e.g., planning a reach or saccade) and the direction of the currently planned movement from single-trial information. This new evidence provides further support for a role of the parietal cortex in movement planning and the potential application of LFP signals for a brain-machine interface.  相似文献   

7.
Neuronal gamma oscillations have been described in local field potentials of different brain regions of multiple species. Gamma oscillations are thought to reflect rhythmic synaptic activity organized by inhibitory interneurons. While several aspects of gamma rhythmogenesis are relatively well understood, we have much less solid evidence about how gamma oscillations contribute to information processing in neuronal circuits. One popular hypothesis states that a flexible routing of information between distant populations occurs via the control of the phase or coherence between their respective oscillations. Here, we investigate how a mismatch between the frequencies of gamma oscillations from two populations affects their interaction. In particular, we explore a biophysical model of the reciprocal interaction between two cortical areas displaying gamma oscillations at different frequencies, and quantify their phase coherence and communication efficiency. We observed that a moderate excitatory coupling between the two areas leads to a decrease in their frequency detuning, up to ~6 Hz, with no frequency locking arising between the gamma peaks. Importantly, for similar gamma peak frequencies a zero phase difference emerges for both LFP and MUA despite small axonal delays. For increasing frequency detunings we found a significant decrease in the phase coherence (at non-zero phase lag) between the MUAs but not the LFPs of the two areas. Such difference between LFPs and MUAs behavior is due to the misalignment between the arrival of afferent synaptic currents and the local excitability windows. To test the efficiency of communication we evaluated the success of transferring rate-modulations between the two areas. Our results indicate that once two populations lock their peak frequencies, an optimal phase relation for communication appears. However, the sensitivity of locking to frequency mismatch suggests that only a precise and active control of gamma frequency could enable the selection of communication channels and their directionality.  相似文献   

8.
Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5–12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats—whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing—during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers.  相似文献   

9.
Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment.  相似文献   

10.
Studies analyzing sensory cortical processing or trying to decode brain activity often rely on a combination of different electrophysiological signals, such as local field potentials (LFPs) and spiking activity. Understanding the relation between these signals and sensory stimuli and between different components of these signals is hence of great interest. We here provide an analysis of LFPs and spiking activity recorded from visual and auditory cortex during stimulation with natural stimuli. In particular, we focus on the time scales on which different components of these signals are informative about the stimulus, and on the dependencies between different components of these signals. Addressing the first question, we find that stimulus information in low frequency bands (<12 Hz) is high, regardless of whether their energy is computed at the scale of milliseconds or seconds. Stimulus information in higher bands (>50 Hz), in contrast, is scale dependent, and is larger when the energy is averaged over several hundreds of milliseconds. Indeed, combined analysis of signal reliability and information revealed that the energy of slow LFP fluctuations is well related to the stimulus even when considering individual or few cycles, while the energy of fast LFP oscillations carries information only when averaged over many cycles. Addressing the second question, we find that stimulus information in different LFP bands, and in different LFP bands and spiking activity, is largely independent regardless of time scale or sensory system. Taken together, these findings suggest that different LFP bands represent dynamic natural stimuli on distinct time scales and together provide a potentially rich source of information for sensory processing or decoding brain activity.  相似文献   

11.
Local field potentials (LFPs) arise largely from dendritic activity over large brain regions and thus provide a measure of the input to and local processing within an area. We characterized LFPs and their relationship to spikes (multi and single unit) in monkey inferior temporal cortex (IT). LFP responses in IT to complex objects showed strong selectivity at 44% of the sites and tolerance to retinal position and size. The LFP preferences were poorly predicted by the spike preferences at the same site but were better explained by averaging spikes within approximately 3 mm. A comparison of separate sites suggests that selectivity is similar on a scale of approximately 800 microm for spikes and approximately 5 mm for LFPs. These observations imply that inputs to IT neurons convey selectivity for complex shapes and that such input may have an underlying organization spanning several millimeters.  相似文献   

12.

Background

In Huntington’s disease (HD), motor symptoms develop prior to the widespread loss of neurons in striatum and cerebral cortex. The aim of this study was to examine dysfunctional patterns of corticostriatal communication during spontaneously occurring behaviors in a transgenic mouse model of HD.

Methodology/Principal Findings

Local field potentials (LFPs) were recorded from two closely interconnected areas, motor cortex and dorsal striatum, in wild-type controls (WT, n = 14) and a widely used transgenic HD model (R6/2 mice, n = 12). All mice were between the ages of 7–9 weeks, a critical period of motor symptom development in R6/2s. Recordings were obtained while the mice were behaving freely in an open field. Specific LFP activity was extracted using timestamps for three increasingly demanding motor behaviors: 1) resting; 2) grooming; and 3) active exploration. Power spectral densities (PSD) were obtained for the cortical and striatal LFPs as well as coherence levels and relative phase across the frequency spectrum. In both brain regions, only R6/2s showed high frequency LFP oscillations during rest and grooming. As behavior increased from resting to exploring, corticostriatal synchrony at high frequencies declined in R6/2s, completely opposite to the WT pattern. R6/2s also exhibited nearly in-phase corticostriatal activity (cortex phase leads of ∼5°), while the WTs consistently showed cortical phase lags of ∼20° across all assessed behaviors, indicating a lead role for striatum.

Conclusions/Significance

Our results add to growing evidence for altered communication between cortex and striatum in HD and suggest more generally that increasingly demanding motor behaviors differentially modulate corticostriatal communication. Our data also suggest conduction delays in R6/2 corticostriatal transmission, leading to compensatory speeding of LFP activity, as evidenced by the presence of high frequency LFP oscillations.  相似文献   

13.
The Local Field Potential (LFP) is the analog signal recorded from a microelectrode inserted into cortex, typically in the frequency band of approximately 1 to 200 Hz. Here visual stimuli were flashed on in the receptive fields of primary visual cortical neurons in awake behaving macaques, and both isolated single units (neurons) and the LFP signal were recorded from the same unipolar microelectrode. The fall-off of single unit activity as a visual stimulus was moved from near the center to near the edge of the receptive field paralleled the fall-off of the stimulus-locked (evoked) LFP response. This suggests that the evoked LFP strongly reflects local neuronal activity. However, the evoked LFP could be significant even when the visual stimulus was completely outside the receptive field and the single unit response had fallen to zero, although this phenomenon was variable. Some of the non-local components of the LFP may be related to the slow distributed, or non-retinotopic, LFP signal previously observed in anesthetized animals. The induced (not time-locked to stimulus onset) component of the LFP showed significant increases only for stimuli within the receptive field of the single units. While the LFP primarily reflects local neuronal activity, it can also reflect neuronal activity at more distant sites, although these non-local components are typically more variable, slower, and weaker than the local components.  相似文献   

14.
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.  相似文献   

15.
The hypothesis that cortical networks employ the coordinated activity of groups of neurons, termed assemblies, to process information is debated. Results from multiple single-unit recordings are not conclusive because of the dramatic undersampling of the system. However, the local field potential (LFP) is a mesoscopic signal reflecting synchronized network activity. This raises the question whether the LFP can be employed to overcome the problem of undersampling. In a recent study in the motor cortex of the awake behaving monkey based on the locking of coincidences to the LFP we determined a lower bound for the fraction of spike coincidences originating from assembly activation. This quantity together with the locking of single spikes leads to a lower bound for the fraction of spikes originating from any assembly activity. Here we derive a statistical method to estimate the fraction of spike synchrony caused by assemblies—not its lower bound—from the spike data alone. A joint spike and LFP surrogate data model demonstrates consistency of results and the sensitivity of the method. Combining spike and LFP signals, we obtain an estimate of the fraction of spikes resulting from assemblies in the experimental data.  相似文献   

16.
Alterations in oscillatory brain activity are strongly correlated with cognitive performance in various physiological rhythms. The present study investigated whether the directionality of neural information flow (NIF) could be used to characterize the synaptic plasticity in thalamocortical (TC) pathway, and examined which frequency field oscillations were mostly related to the cognitive deficiency in depression. Two novel algorithms were employed to determine the coupling interaction between the LD thalamus and medial prefrontal cortex (mPFC) in five frequency bands, using the phase signals of local field potentials (LFP) in these two regions. The results showed that the power of neural activity in mPFC was increased in delta, theta and beta frequency bands in depression. However, the nonlinear characteristics of LFP activity were weakened in depression by means of sample entropy measurements. In the analysis of phase dynamics, the phase synchronization values were reduced in theta rhythm in stressed rats. Importantly, the coupling direction index d and the unidirectional influence from LD thalamus to mPFC were significantly reduced at the theta rhythm in rats in depression, and increased after memantine treatment, which were associated with the LTP alterations and cognitive impairment in our previous report. Moreover, the fact that the reduced entropy value was only found in mPFC might implicate postsynaptic effect involved in synaptic plasticity alteration in the depression model. The results suggest that the effects of depression on cognitive deficits are mediated via profound alterations in information flow in the TC pathway, and the directional index at theta rhythm could be used as a measurement of synaptic plasticity.  相似文献   

17.
The cortex is spontaneously active, even in the absence of any particular input or motor output. During development, this activity is important for the migration and differentiation of cortex cell types and the formation of neuronal connections1. In the mature animal, ongoing activity reflects the past and the present state of an animal into which sensory stimuli are seamlessly integrated to compute future actions. Thus, a clear understanding of the organization of ongoing i.e. spontaneous activity is a prerequisite to understand cortex function. Numerous recording techniques revealed that ongoing activity in cortex is comprised of many neurons whose individual activities transiently sum to larger events that can be detected in the local field potential (LFP) with extracellular microelectrodes, or in the electroencephalogram (EEG), the magnetoencephalogram (MEG), and the BOLD signal from functional magnetic resonance imaging (fMRI). The LFP is currently the method of choice when studying neuronal population activity with high temporal and spatial resolution at the mesoscopic scale (several thousands of neurons). At the extracellular microelectrode, locally synchronized activities of spatially neighbored neurons result in rapid deflections in the LFP up to several hundreds of microvolts. When using an array of microelectrodes, the organizations of such deflections can be conveniently monitored in space and time. Neuronal avalanches describe the scale-invariant spatiotemporal organization of ongoing neuronal activity in the brain2,3. They are specific to the superficial layers of cortex as established in vitro4,5, in vivo in the anesthetized rat 6, and in the awake monkey7. Importantly, both theoretical and empirical studies2,8-10 suggest that neuronal avalanches indicate an exquisitely balanced critical state dynamics of cortex that optimizes information transfer and information processing.In order to study the mechanisms of neuronal avalanche development, maintenance, and regulation, in vitro preparations are highly beneficial, as they allow for stable recordings of avalanche activity under precisely controlled conditions. The current protocol describes how to study neuronal avalanches in vitro by taking advantage of superficial layer development in organotypic cortex cultures, i.e. slice cultures, grown on planar, integrated microelectrode arrays (MEA; see also 11-14).  相似文献   

18.
Phase-of-firing coding of natural visual stimuli in primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the hypothesis that neurons encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network fluctuations rather than only in terms of their spike count. We recorded local field potentials (LFPs) and multiunit spikes from the primary visual cortex of anaesthetized macaques while binocularly presenting a color movie. We found that both the spike counts and the low-frequency LFP phase were reliably modulated by the movie and thus conveyed information about it. Moreover, movie periods eliciting higher firing rates also elicited a higher reliability of LFP phase across trials. To establish whether the LFP phase at which spikes were emitted conveyed visual information that could not be extracted by spike rates alone, we compared the Shannon information about the movie carried by spike counts to that carried by the phase of firing. We found that at low LFP frequencies, the phase of firing conveyed 54% additional information beyond that conveyed by spike counts. The extra information available in the phase of firing was crucial for the disambiguation between stimuli eliciting high spike rates of similar magnitude. Thus, phase coding may allow primary cortical neurons to represent several effective stimuli in an easily decodable format.  相似文献   

19.
To combine insights obtained from electric field potentials (LFPs) and neuronal spiking activity (MUA) we need a better understanding of the relative spatial summation of these indices of neuronal activity. Compared to MUA, the LFP has greater spatial coherence, resulting in lower spatial specificity and lower stimulus selectivity. A differential propagation of low- and high-frequency electric signals supposedly underlies this phenomenon, which could result from cortical tissue specifically attenuating higher frequencies, i.e., from a frequency-dependent impedance spectrum. Here we directly measure the cortical impedance spectrum in vivo in monkey primary visual cortex. Our results show that impedance is independent of frequency, is homogeneous and tangentially isotropic within gray matter, and can be theoretically predicted assuming a pure-resistive conductor. We propose that the spatial summation of LFP and MUA is determined by the size of these signals' generators and the nature of neural events underlying them, rather than by biophysical properties of gray matter.  相似文献   

20.
Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号