首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
d-Serine, a co-agonist at the NMDA receptor (NMDAR), is synthesized from l-serine by the enzyme serine racemase (SR), which is heavily expressed in the forebrain. Although SR was originally reported to be localized exclusively to astrocytes, recent conditional knock out results demonstrate that little SR is expressed in forebrain astrocytes. As a consequence, the cellular location of its product, d-serine, in the brain is also uncertain. Immunocytochemistry now indicates that SR is expressed primarily in forebrain glutamatergic neurons with the remainder in GABAergic interneurons. We utilized SR deficient (SR?/?) mice, which have <15 % of normal d-serine levels, to validate and optimize a d-serine immunohistochemical method. Nearly all of the d-serine in neocortex and hippocampus (HP) is found in neurons, with virtually no d-serine co-localizing with two astrocyte markers. Interestingly, only a subset of the d-serine positive neurons contained SR in the neocortex and HP. Greater than half of the d-serine positive neurons were GABAergic interneurons, with a majority of these neurons containing parvalbumin and/or somatostatin. Only ~25–40 % of interneurons expressed SR in the neocortex and HP. Finally, we demonstrate in human post-mortem neocortex that SR is found in both excitatory and inhibitory neurons, but not in S100β-containing astrocytes. In sum, these findings conclusively demonstrate that the majority of d-serine is both synthesized and stored in neurons. It will be important to determine the functional significance for the separation of synthesis and storage of d-serine in neurons, as well as the presence of this NMDAR co-agonist in GABAergic interneurons.  相似文献   

2.
d-Serine, an endogenous co-agonist for the glycine site of the synaptic NMDA glutamate receptor, regulates synaptic plasticity and is implicated in schizophrenia. Serine racemase (SR) is the enzyme that converts l-serine to d-serine. In this study, we demonstrate that SR interacts with the synaptic proteins, postsynaptic density protein 95 (PSD-95) and stargazin, forming a ternary complex. SR binds to the PDZ3 domain of PSD-95 through the PDZ domain ligand at its C terminus. SR also binds to the C terminus of stargazin, which facilitates the cell membrane localization of SR and inhibits its activity. AMPA receptor activation internalizes SR and disrupts its interaction with stargazin, therefore derepressing SR activity, leading to more d-serine production and potentially facilitating NMDA receptor activation. These interactions regulate the enzymatic activity as well as the intracellular localization of SR, potentially coupling the activities of NMDA and AMPA receptors. This shuttling of a neurotransmitter synthesizing enzyme between two receptors appears to be a novel mode of synaptic regulation.  相似文献   

3.
Zhang  Jiaxian  Jing  Yu  Zhang  Hu  Liu  Ping 《Amino acids》2021,53(9):1441-1454

l-arginine is a versatile amino acid with a number of bioactive metabolites. Increasing evidence implicates altered arginine metabolism in the aging and neurodegenerative processes. The present study, for the first time, determined the effects of sex and estrous cycle on the brain and blood (plasma) arginine metabolic profile in naïve rats. Female rats displayed significantly lower levels of l-arginine in the frontal cortex and three sub-regions of the hippocampus when compared to male rats. Moreover, female rats had significantly higher levels of l-arginine and γ-aminobutyric acid, but lower levels of l-ornithine, agmatine and putrescine, in plasma relative to male rats. The observed sex difference in brain l-arginine appeared to be independent of the enzymes involved in its metabolism, de novo synthesis and blood-to-brain transport (cationic acid transporter 1 protein expression at least), as well as circulating l-arginine. While the estrous cycle did not affect l-arginine and its metabolites in the brain, there were estrous cycle phase-dependent changes in plasma l-arginine. These findings demonstrate the sex difference in brain l-arginine in the estrous cycle-independent manner. Since peripheral blood has been increasingly used to identify biomarkers of brain pathology, the influences of sex and estrous cycle on blood arginine metabolic profile need attention when experimental research involves female rodents.

  相似文献   

4.
d-Serine, which is synthesized by the enzyme serine racemase (SR), is a co-agonist at the N-methyl-d-aspartate receptor (NMDAR). Crucial to an understanding of the signaling functions of d-serine is defining the sites responsible for its synthesis and release. In order to quantify the contributions of astrocytes and neurons to SR and d-serine localization, we used recombinant DNA techniques to effect cell type selective suppression of SR expression in astrocytes (aSRCKO) and in forebrain glutamatergic neurons (nSRCKO). The majority of SR is expressed in neurons: SR expression was reduced by ~65% in nSRCKO cerebral cortex and hippocampus, but only ~15% in aSRCKO as quantified by western blots. In contrast, nSRCKO is associated with only modest decreases in d-serine levels as quantified by HPLC, whereas d-serine levels were unaffected in aSRCKO mice. Liver expression of SR was increased by 35% in the nSRCKO, suggesting a role for peripheral SR in the maintenance of brain d-serine. Electrophysiologic studies of long-term potentiation (LTP) at the Schaffer collateral–CA1 pyramidal neuron synapse revealed no alterations in the aSRCKO mice versus wild-type. LTP induced by a single tetanic stimulus was reduced by nearly 70% in the nSRCKO mice. Furthermore, the mini-excitatory post-synaptic currents mediated by NMDA receptors but not by AMPA receptors were significantly reduced in nSRCKO mice. Our findings indicate that in forebrain, where d-serine appears to be the endogenous co-agonist at NMDA receptors, SR is predominantly expressed in glutamatergic neurons, and co-release of glutamate and d-serine is required for optimal activation of post-synaptic NMDA receptors.  相似文献   

5.
N-methyl-d-aspartate (NMDA) receptors, one of the three main types of ionotropic glutamate receptors (iGluRs), are involved in excitatory synaptic transmission, and their dysfunction is implicated in various neurological disorders. NMDA receptors, heterotetramers typically composed of GluN1 and GluN2 subunits, are the only members of the iGluR family that bind allosteric modulators at their amino-terminal domains (ATDs). We used luminescence resonance energy transfer to characterize the conformational changes the receptor undergoes upon binding ifenprodil, a synthetic compound that specifically inhibits activation of NMDA receptors containing GluN2B. We found that ifenprodil induced an overall closure of the GluN2B ATD without affecting conformation of the GluN1 ATD or the upper lobes of the ATDs, the same mechanism whereby zinc inhibits GluN2A. These data demonstrate that the conformational changes induced by zinc and ifenprodil represent a conserved mechanism of NMDA receptor inhibition. Additionally, we compared the structural mechanism of zinc inhibition of GluN1–GluN2A receptors to that of ifenprodil inhibition of GluN1–GluN2B. The similarities in the conformational changes induced by inhibitor binding suggest a conserved structural mechanism of inhibition independent of the binding site of the modulator.  相似文献   

6.
Glutamine synthetase in brain: effect of ammonia   总被引:16,自引:0,他引:16  
Glutamine synthetase (GS) in brain is located mainly in astrocytes. One of the primary roles of astrocytes is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate and converting it into glutamine via the enzyme GS. Changes in GS expression may reflect changes in astroglial function, which can affect neuronal functions.Hyperammonemia is an important factor responsible of hepatic encephalopathy (HE) and causes astroglial swelling. Hyperammonemia can be experimentally induced and an adaptive astroglial response to high levels of ammonia and glutamate seems to occur in long-term studies. In hyperammonemic states, astroglial cells can experience morphological changes that may alter different astrocyte functions, such as protein synthesis or neurotransmitters uptake. One of the observed changes is the increase in the GS expression in astrocytes located in glutamatergic areas. The induction of GS expression in these specific areas would balance the increased ammonia and glutamate uptake and protect against neuronal degeneration, whereas, decrease of GS expression in non-glutamatergic areas could disrupt the neuron-glial metabolic interactions as a consequence of hyperammonemia.Induction of GS has been described in astrocytes in response to the action of glutamate on active glutamate receptors. The over-stimulation of glutamate receptors may also favour nitric oxide (NO) formation by activation of NO synthase (NOS), and NO has been implicated in the pathogenesis of several CNS diseases. Hyperammonemia could induce the formation of inducible NOS in astroglial cells, with the consequent NO formation, deactivation of GS and dawn-regulation of glutamate uptake. However, in glutamatergic areas, the distribution of both glial glutamate receptors and glial glutamate transporters parallels the GS location, suggesting a functional coupling between glutamate uptake and degradation by glutamate transporters and GS to attenuate brain injury in these areas.In hyperammonemia, the astroglial cells located in proximity to blood-vessels in glutamatergic areas show increased GS protein content in their perivascular processes. Since ammonia freely crosses the blood-brain barrier (BBB) and astrocytes are responsible for maintaining the BBB, the presence of GS in the perivascular processes could produce a rapid glutamine synthesis to be released into blood. It could, therefore, prevent the entry of high amounts of ammonia from circulation to attenuate neurotoxicity. The changes in the distribution of this critical enzyme suggests that the glutamate-glutamine cycle may be differentially impaired in hyperammonemic states.  相似文献   

7.

Glutamate is the major excitatory amino acid neurotransmitter in the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed in neurons and glial cells. Overactivation of glutamate receptors results in neuronal death, known as excitotoxicity. A family of sodium-dependent glutamate transporters enriched in glial cells are responsible of the vast majority of the removal of this amino acid form the synaptic cleft. Therefore, a precise and exquisite regulation of these proteins is required not only for a proper glutamatergic transmission but also for the prevention of an excitotoxic insult. Manganese is a trace element essential as a cofactor for several enzymatic systems, although in high concentrations is involved in the disruption of brain glutamate homeostasis. The molecular mechanisms associated to manganese neurotoxicity have been focused on mitochondrial function, although energy depletion severely compromises the glutamate uptake process. In this context, in this contribution we analyze the effect of manganese exposure in glial glutamate transporters function. To this end, we used the well-established model of chick cerebellar Bergmann glia cultures. A time and dose dependent modulation of [3H]-d-aspartate uptake was found. An increase in the transporter catalytic efficiency, most probably linked to a discrete increase in the affinity of the transporter was detected upon manganese exposure. Interestingly, glucose uptake was reduced by this metal. These results favor the notion of a direct effect of manganese on glial cells, this in turn alters their coupling with neurons and might lead to changes in glutamatergic transmission.

  相似文献   

8.
It appears almost incredible that the first indications that glutamate excites brain tissue were obtained during the second half of the 20th century, that vesicles containing glutamate were demonstrated in glutamatergic neurons less than 25 years ago, and that glutamate was not accepted as the major excitatory transmitter until about the same time. During this span of time it has also become realized that glutamate is so much more than a conventional neurotransmitter: (1) astrocytes express vesicles accumulating glutamate by vesicular transporters akin to the vesicular glutamate transporters in glutamatergic neurons, and they release glutamate by exocytosis; (2) a series of metabolic processes in astrocytes (glutamate uptake, glutamine synthetase activity, glutamine release) are involved in neuronal reutilization of transmitter glutamate; (3) glutamine may also be utilized for synthesis of GABA, the major inhibitory transmitter; (4) de novo synthesis of glutamate accounts for 20% of cerebral glucose metabolism, all of which initially occurs in astrocytes, and at steady state a corresponding amount of glutamate is oxidatively degraded, mainly or exclusively in astrocytes; (5) tissue contents of glutamate/glutamine increase during enhanced glutamatergic activity, i.e., astrocytic de novo synthesis exceeds astrocytic metabolic degradation of glutamate.  相似文献   

9.
In the present study, we identified l-erythro-β-hydroxyasparagine (l-β-EHAsn) found abundantly in human urine, as a novel substrate of Zn2+-dependent d-serine dehydratase (DSD). l-β-EHAsn is an atypical amino acid present in large amounts in urine but rarely detected in serum or most organs/tissues examined. Quantitative analyses of urinary l-β-EHAsn in young healthy volunteers revealed significant correlation between urinary l-β-EHAsn concentration and creatinine level. Further, for in-depth analyses of l-β-EHAsn, we developed a simple three-step synthetic method using trans-epoxysuccinic acid as the starting substance. In addition, our research revealed a strong inhibitory effect of l-β-EHAsn on mammalian serine racemase, responsible for producing d-serine, a co-agonist of the N-methyl-d-aspartate (NMDA) receptor involved in glutamatergic neurotransmission.  相似文献   

10.
Brain cells are especially rich in polyunsaturated fatty acids (PUFA), mainly the n-3 PUFA docosahexaenoic acid (DHA) and the n-6 PUFA arachidonic acid (AA). They are released from membranes by PLA2 during neurotransmission, and may regulate glutamate uptake by astroglia, involved in controlling glutamatergic transmission. AA has been shown to inhibit glutamate transport in several model systems, but the contribution of DHA is less clear and has not been evaluated in astrocytes. Because the high DHA content of brain membranes is essential for brain function, we investigated the role of DHA in the regulation of astroglial glutamate transport.We evaluated the actions of DHA and AA using cultured rat astrocytes and suspensions of rat brain membranes (P1 fractions). DHA reduced d-[3H]aspartate uptake by cultured astrocytes and cortical membrane suspensions, while AA did not. This also occurred in astrocytes enriched with α-tocopherol, indicating that it was not due to peroxidation products. The reduction of d-[3H]aspartate uptake by DHA did not involve any change in the concentrations of membrane-associated astroglial glutamate transporters (GLAST and GLT-1), suggesting that DHA reduced the activity of the transporters. In contrast with the inhibition induced by free-DHA, we found no effect of membrane-bound DHA on d-[3H]aspartate uptake. Indeed, the uptake was similar in astrocytes with varying amount of DHA in their membrane (induced by long-term supplementation with DHA or AA). Therefore, DHA reduces glutamate uptake through a signal-like effect but not through changes in the PUFA composition of the astrocyte membranes. Also, reactive astrocytes, induced by a medium supplement (G5), were insensitive to DHA. This suggests that DHA regulates synaptic glutamate under basal condition but does not impair glutamate scavenging under reactive conditions.These results indicate that DHA slows astroglial glutamate transport via a specific signal-like effect, and may thus be a physiological synaptic regulator.  相似文献   

11.

Oral mucositis is an inflammation of the oral mucosa mainly resulting from the cytotoxic effect of 5-fluorouracil (5-FU). The literature shows anti-inflammatory action of l-cysteine (l-cys) involving hydrogen sulfide (H2S). In view of these properties, we investigate the effect of l-cys in oral mucositis induced by 5-FU in hamsters. The animals were divided into the following groups: saline 0.9%, mechanical trauma, 5-FU 60–40 mg/kg, l-cys 10/40 mg and NaHS 27 µg/kg. 5-FU was administered on days 1st to 2nd; 4th day excoriations were made on the mucosa; 5th–6th received l-cys and NaHS. For data analysis, histological analyses, mast cell count, inflammatory and antioxidants markers, and immunohistochemistry (cyclooxygenase-2(COX-2)/inducible nitric oxide synthase (iNOs)/H2S) were performed. Results showed that l-cys decreased levels of inflammatory markers, mast cells, levels of COX-2, iNOS and increased levels of antioxidants markers and H2S when compared to the group 5-FU (p < 0.005). It is suggested that l-cys increases the H2S production with anti-inflammatory action in the 5-FU lesion.

  相似文献   

12.
In an in vivo dialysis experiment, the intra-medial frontal cortex infusion of a system A and Asc-1 transporter inhibitor, S-methyl-l-cysteine, caused a concentration-dependent increase in the dialysate contents of an endogenous coagonist for the N-methyl-d-aspartate (NMDA) type glutamate receptor, d-serine, in the cortical portion. These results suggest that these neutral amino acid transporters could control the extracellular d-serine signaling in the brain and be a target for the development of a novel threapy for neuropsychiatric disorders with an NMDA receptor dysfunction.  相似文献   

13.
N-methyl-d-aspartate (NMDA) receptors are the only neurotransmitter receptors whose activation requires two distinct agonists. Heterotetramers of two GluN1 and two GluN2 subunits, NMDA receptors are broadly distributed in the central nervous system, where they mediate excitatory currents in response to synaptic glutamate release. Pore opening depends on the concurrent presence of glycine, which modulates the amplitude and time course of the glutamate-elicited response. Gating schemes for fully glutamate- and glycine-bound NMDA receptors have been described in sufficient detail to bridge the gap between microscopic and macroscopic receptor behaviors; for several receptor isoforms, these schemes include glutamate-binding steps. We examined currents recorded from cell-attached patches containing one GluN1/GluN2A receptor in the presence of several glycine-site agonists and used kinetic modeling of these data to develop reaction schemes that include explicit glycine-binding steps. Based on the ability to match a series of experimentally observed macroscopic behaviors, we propose a model for activation of the glutamate-bound NMDA receptor by glycine that predicts apparent negative agonist cooperativity and glycine-dependent desensitization in the absence of changes in microscopic binding or desensitization rate constants. These results complete the basic steps of an NMDA receptor reaction scheme for the GluN1/GluN2A isoform and prompt a reevaluation of how glycine controls NMDA receptor activation. We anticipate that our model will provide a useful quantitative instrument to further probe mechanisms and structure–function relationships of NMDA receptors and to better understand the physiological and pathological implications of endogenous fluctuations in extracellular glycine concentrations.  相似文献   

14.
Liu  Ke  Yu  Haoran  Sun  Guoyun  Liu  Yanfeng  Li  Jianghua  Du  Guocheng  Lv  Xueqin  Liu  Long 《Amino acids》2021,53(9):1361-1371

In our previous study, one-step pyruvate and d-alanine production from d,l-alanine by a whole-cell biocatalyst Escherichia coli expressing l-amino acid deaminase (Pm1) derived from Proteus mirabilis was investigated. However, due to the low catalytic efficiency of Pm1, the pyruvate titer was relatively low. Here, semi-rational design based on site-directed saturation mutagenesis was carried out to improve the catalytic efficiency of Pm1. A novel high-throughput screening (HTS) method for pyruvate based on 2,4-dinitrophenylhydrazine indicator was then established. The catalytic efficiency (kcat/Km) of the mutant V437I screened out by this method was 1.88 times higher than wild type. Next, to improve the growth of the engineered strain BLK07, the genes encoding for Xpk and Fbp were integrated into its genome to construct non-oxidative glycolysis (NOG) pathway. Finally, the CRISPR/Cas9 system was used to integrate the N6-pm1-V437I gene into the genome of BLK07. Pyruvic acid titer of the plasmid-free strain reached 42.20 g/L with an l-alanine conversion rate of 77.62% and a d-alanine resolution of 82.4%. This work would accelerate the industrial production of pyruvate and d-alanine by biocatalysis, and the HTS method established here could be used to screen other Pm1 mutants with high pyruvate titers.

  相似文献   

15.

At present, physicochemical properties of amino acid molecular crystals are of the utmost interest. The compounds where molecules have different chirality are the focus of particular interest. This paper, presents a study on the structural and electronic properties of crystalline l- and dl-valine within the framework of density functional theory including van der Waals interactions. The results of this study showed that electronic properties of the two forms of valine are similar at zero pressure. Pressure leads to different responses in these crystals which is manifested as various deformations of molecules. The pressure effect on the infrared spectra and distribution of electron density of l- and dl-valine has been studied.

  相似文献   

16.

l-Carnosine is an amino acid that acts as an anti-oxidant, anti-toxic and neuroprotective agent. There is a paucity of data about the effectiveness of l-Carnosine in the management of autism spectrum disorder (ASD) in children. This study aimed at investigating the effectiveness of l-Carnosine as adjunctive therapy in the management of ASD. This was a randomized controlled trial. Children aged 3–6 years with a diagnosis of mild to moderate ASD were assigned to standard care arm (occupational and speech therapy) and intervention care arm (l-Carnosine, 10–15 mg/kg in 2 divided doses) plus standard care treatment. The children were assessed at the baseline and the end of 2 months for the scores of Childhood Autism Rating Scale, Second Edition—Standard Version (CARS2-ST), Autism Treatment Evaluation Checklist (ATEC), BEARS sleep screening tool and 6-item Gastrointestinal Severity Index (6-GSI). Of the sixty-seven children enrolled, sixty-three children had completed the study. No statistically significant difference (p > 0.05) was observed for any of the outcome measures assessed. Supplementation of l-Carnosine did not improve the total score of CARS2-ST, ATEC, BEARS sleep screening tool and 6-GSI scores of children with ASD. Further investigations are needed with more objective assessments to critically validate the effectiveness of l-Carnosine on ASD children for more decisive results.

  相似文献   

17.
The N-methyl-d-aspartate (NMDA) receptors play key roles in excitatory neurotransmission and are involved in several important processes, including learning, behavior, and synaptic plasticity. The regulation of NMDA receptor neurotransmission has been extensively studied, but many important questions still remain unsolved. One of the most debated aspects of the NMDA receptor regulation relates to the identity, role, and cellular origin of the NMDA coagonist(s). In addition to glutamate, the NMDA receptor activity was believed to be regulated by the coagonist glycine. More recently, d-serine has also been proposed to play a role as a key coagonist for NMDA receptor activity and neurotoxicity. A surprising unique biosynthetic pathway for d-serine has been demonstrated, indicating the conservation of d-amino acid metabolism in mammals. d-Serine was originally shown to be exclusively made in astrocytes, indicating a possible role as a gliotransmitter. Nevertheless, recent data indicate that d-serine has a neuronal origin as well, which raises several new questions on d-serine disposition. In this review, I discuss recent advances in the field and propose a novel model of d-serine signaling that includes a bidirectional flow of d-serine between astrocytes and neurons. This review is dedicated to the memory of Dr. Marcos Wolosker.  相似文献   

18.
Yang  Jiangxia  Li  Xiaoqi  Du  Yingxiang  Ma  Mingxuan  Zhang  Liu  Zhang  Jian  Li  Peipei 《Amino acids》2021,53(2):195-204

In this work, we prepared gold nanoparticles (AuNPs) by employing gluconic acid (GlcA) as reducing-cum-stabilizing agent. The proposed GlcA-AuNPs successfully worked as a colorimetric sensor for visual chiral recognition of aromatic amino acid enantiomers, namely tyrosine (d/l-Tyr), phenylalanine (d/l-Phe), and tryptophan (d/l-Trp). After adding L-types to GlcA-AuNPs solution, the color of the mixture changed from red to purple (or gray), while no obvious color change occurred on the addition of D-types. The effect can be detected by naked eyes. The particles have been characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, zeta potential, the dynamic light scattering analysis as well as UV–Vis spectroscopy. This assay can be used to determine the enantiomeric excess of l-Trp in the range from 0 to + 100%. The method has advantages in simplicity, sensitivity, fast response, and low cost.

  相似文献   

19.
The neocortex represents one of the largest estates of the human brain. This structure comprises ~30–40 billions of neurones and even more of non-neuronal cells. Astrocytes, highly heterogeneous homoeostatic glial cells, are fundamental for housekeeping of the brain and contribute to information processing in neuronal networks. Gray matter astrocytes tightly enwrap synapses, contact blood vessels and, naturally, are also in contact with the extracellular space, where convection of fluid takes place. Thus astrocytes receive signals from several distinct extracellular domains and can get excited by numerous mechanisms, which regulate cytosolic concentration of second messengers, such as Ca2+ and cAMP. Excited astrocytes often secrete diverse substances (generally referred to as gliosignalling molecules) that include classical neurotransmitters such as glutamate and ATP or neuromodulators such as d-serine or neuropeptides. Astrocytic secretion occurs through several mechanisms: by diffusion through membrane channels, by translocation via plasmalemmal transporters or by vesicular exocytosis. Vesicular release of gliosignalling molecules appears fundamentally similar to that operating in neurones, since it depends on the SNARE proteins-dependent merger of the vesicle membrane with the plasmalemma. However, the coupling between the stimulus and astroglial vesicular secretion is at least one order of magnitude slower than that in neurones. Here we review mechanisms of astrocytic excitability and the molecular, anatomical and physiological properties of vesicular apparatus mediating the release of gliosignalling molecules in health and in the neurodegenerative pathology.  相似文献   

20.
The N-methyl-d-aspartate (NMDA) subtype of the ionotropic glutamate receptors is the primary mediator of calcium-permeable excitatory neurotransmission in the central nervous system. Subunit composition and binding of allosteric modulators to the amino-terminal domain determine the open probability of the channel. By using luminescence resonance energy transfer with functional receptors expressed in CHO cells, we show that the cleft of the amino-terminal domain of the GluN2B subunit, which has a lower channel open probability, is on average more closed than the GluN2A subunit, which has a higher open probability. Furthermore, the GluN1 amino-terminal domain adopts a more open conformation when coassembled with GluN2A than with GluN2B. Binding of spermine, an allosteric potentiator, opens the amino-terminal domain cleft of both the GluN2B subunit and the adjacent GluN1 subunit. These studies provide direct structural evidence that the inherent conformations of the amino-terminal domains vary based on the subunit and match the reported open probabilities for the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号