首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR) result in cystic fibrosis (CF). CFTR is a chloride channel that is regulated by phosphorylation and gated by ATP binding and hydrolysis at its nucleotide binding domains (NBDs). G551D-CFTR, the third most common CF-associated mutation, has been characterized as having a lower open probability (Po) than wild-type (WT) channels. Patients carrying the G551D mutation present a severe clinical phenotype. On the other hand, G1349D, also a mutant with gating dysfunction, is associated with a milder clinical phenotype. Residues G551 and G1349 are located at equivalent positions in the highly conserved signature sequence of each NBD. The physiological importance of these residues lies in the fact that the signature sequence of one NBD and the Walker A and B motifs from the other NBD form the ATP-binding pocket (ABP1 and ABP2, named after the location of the Walker A motif) once the two NBDs dimerize. Our studies show distinct gating characteristics for these mutants. The G551D mutation completely eliminates the ability of ATP to increase the channel activity, and the observed activity is approximately 100-fold smaller than WT-CFTR. G551D-CFTR does not respond to ADP, AMP-PNP, or changes in [Mg(2+)]. The low activity of G551D-CFTR likely represents the rare ATP-independent gating events seen with WT channels long after the removal of ATP. G1349D-CFTR maintains ATP dependence, albeit with a Po approximately 10-fold lower than WT. Interestingly, compared to WT results, the ATP dose-response relationship of G1349D-CFTR is less steep and shows a higher apparent affinity for ATP. G1349D data could be well described by a gating model that predicts that binding of ATP at ABP1 hinders channel opening. Thus, our data provide a quantitative explanation at the single-channel level for different phenotypes presented by patients carrying these two mutations. In addition, these results support the idea that CFTR's two ABPs play distinct functional roles in gating.  相似文献   

2.
The pharmacological activation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel mutated at glycine 551 (G551D-CFTR) was studied in the presence of the benzimidazolone derivative NS004 and compared to that of wild-type (wt) CFTR. Using iodide (125I) efflux and whole-cell patch-clamp techniques we found dose-dependent stimulation of phosphorylated wt-CFTR channels by NS004 with an EC 50 11 µM. With non-phosphorylated CFTR, the effect of NS004 was apparent only at concentration >100 µM. In G551D-CFTR-expressing CHO cells, neither forskolin (from 0.1 to 10 µM) nor NS004 (from 0.1 to 200 µM) added separately were able to stimulate channel activity. However, in the presence of 10 µM forskolin, NS004 stimulated G551D-CFTR activity in a dose-dependent manner with an EC 50 1.5 µM. We also determined the half-maximal effective concentration of forskolin (EC 50 3.2 µM) required to stimulate G551D channel activity in presence of 1.5 µM NS004. No inhibitory effect was observed at high concentration of NS004 with both wt- and G551D-CFTR. Whole-cell recordings of CFTR chloride currents from cells expressing wild-type or G551D-CFTR in the presence of NS004 were linear, time- and voltage-independent. The inhibitory profile of G551D-CFTR channel activity was similar to that of wild type, i.e., inhibition by glibenclamide (100 µM) and DPC (250 µM) but not by DIDS (200 µM) nor calixarene (100 nM). These results show that NS004 activates wt-CFTR channel and restores G551D-CFTR channel activity, the potency of which depends on both the concentration of NS004 and the phosphorylation status of CFTR.  相似文献   

3.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel gated by ATP binding and hydrolysis at its nucleotide binding domains (NBD). The NBDs dimerize in a head-to-tail configuration, forming two ATP binding pockets (ABP) with the ATP molecules buried at the dimer interface. Previous studies have indicated that ABP2, formed by the Walker A and B motifs of NBD2 and the signature sequence of NBD1, is the site critical for the ATP-dependent opening of CFTR. The G551D mutation in ABP2, the third most common cystic fibrosis-associated mutation, abolishes ATP-dependent gating, resulting in an open probability that is approximately 100-fold lower than that of wild-type channels. Interestingly, we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) increases G551D currents mainly by increasing the open time of the channel. This effect is reduced when P-ATP is applied together with ATP, suggesting a competition between ATP and P-ATP for a common binding site. Introducing mutations that lower the nucleotide binding affinity at ABP2 did not alter significantly the effects of P-ATP on G551D-CFTR, whereas an equivalent mutation at ABP1 (consisting of the Walker A and B motifs of NBD1 and the signature sequence of NBD2) dramatically decreased the potency of P-ATP, indicating that ABP1 is the site where P-ATP binds to increase the activity of G551D-CFTR. These results substantiate the idea that nucleotide binding at ABP1 stabilizes the open channel conformation. Our observation that P-ATP enhances the G551D activity by binding at ABP1 implicates that ABP1 can potentially be a target for drugs to bind and increase the channel activity.  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and ΔF508. Previously we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by ∼7-fold. Here we show that 2′-deoxy-ATP (dATP), but not 3′-deoxy-ATP, increases the activity of G551D-CFTR by ∼8-fold. We custom synthesized N6-(2-phenylethyl)-2′-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 ± 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of ΔF508-CFTR by increasing its activity by 19.5 ± 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with ΔF508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable.  相似文献   

5.
CF (cystic fibrosis) is caused by mutations in CFTR (CF transmembrane conductance regulator), which cause its mistrafficking and/or dysfunction as a regulated chloride channel on the apical surface of epithelia. CFTR is a member of the ABC (ATP-binding-cassette) superfamily of membrane proteins and a disease-causing missense mutation within the ABC signature sequence; G551D-CFTR exhibits defective phosphorylation and ATP-dependent channel gating. Studies of the purified and reconstituted G551D-CFTR protein revealed that faulty gating is associated with defective ATP binding and ATPase activity, reflecting the key role of G551 in these functions. Recently, high-throughput screens of chemical libraries led to identification of modulators that enhance channel activity of G551D-CFTR. However, the molecular target(s) for these modulators and their mechanism of action remain unclear. In the present study, we evaluated the mechanism of action of one small-molecule modulator, VRT-532, identified as a specific modulator of CF-causing mutants. First, we confirmed that VRT-532 causes a significant increase in channel activity of G551D-CFTR using a novel assay of CFTR function in inside-out membrane vesicles. Biochemical studies of purified and reconstituted G551D-CFTR revealed that potentiation of the ATPase activity of VRT-532 is mediated by enhancing the affinity of the mutant for ATP. Interestingly, VRT-532 did not affect the ATPase activity of the Wt (wild-type) CFTR, supporting the idea that this compound corrects the specific molecular defect in this mutant. To summarize, these studies provide direct evidence that this compound binds to G551D-CFTR to rescue its specific defect in ATP binding and hydrolysis.  相似文献   

6.
Cystic fibrosis (CF), one of the most common lethal genetic diseases, is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel that, when phosphorylated, is gated by ATP. The third most common pathogenic mutation, a glycine-to-aspartate mutation at position 551 or G551D, shows a significantly decreased open probability (Po) caused by failure of the mutant channel to respond to ATP. Recently, a CFTR-targeted drug, VX-770 (Ivacaftor), which potentiates G551D-CFTR function in vitro by boosting its Po, has been approved by the FDA to treat CF patients carrying this mutation. Here, we show that, in the presence of VX-770, G551D-CFTR becomes responsive to ATP, albeit with an unusual time course. In marked contrast to wild-type channels, which are stimulated by ATP, sudden removal of ATP in excised inside-out patches elicits an initial increase in macroscopic G551D-CFTR current followed by a slow decrease. Furthermore, decreasing [ATP] from 2 mM to 20 µM resulted in a paradoxical increase in G551D-CFTR current. These results suggest that the two ATP-binding sites in the G551D mutant mediate opposite effects on channel gating. We introduced mutations that specifically alter ATP-binding affinity in either nucleotide-binding domain (NBD1 or NBD2) into the G551D background and determined that this disease-associated mutation converts site 2, formed by the head subdomain of NBD2 and the tail subdomain of NBD1, into an inhibitory site, whereas site 1 remains stimulatory. G551E, but not G551K or G551S, exhibits a similar phenotype, indicating that electrostatic repulsion between the negatively charged side chain of aspartate and the γ-phosphate of ATP accounts for the observed mutational effects. Understanding the molecular mechanism of this gating defect lays a foundation for rational drug design for the treatment of CF.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR) is the only ligand-gated ion channel that hydrolyzes its agonist, ATP. CFTR gating has been argued to be tightly coupled to its enzymatic activity, but channels do open occasionally in the absence of ATP and are reversibly activated (albeit weakly) by nonhydrolyzable nucleotides. Why the latter only weakly activates CFTR is not understood. Here we show that CFTR activation by adenosine 5′-O-(thiotriphosphate) (ATPγS), adenosine 5′-(β,γ-imino)triphosphate (AMP-PNP), and guanosine 5′-3-O-(thio)triphosphate (GTPγS) is enhanced substantially by gain of function (GOF) mutations in the cytosolic loops that increase unliganded activity. This enhancement correlated with the base-line nucleotide-independent activity for several GOF mutations. AMP-PNP or ATPγS activation required both nucleotide binding domains (NBDs) and was disrupted by a cystic fibrosis mutation in NBD1 (G551D). GOF mutant channels deactivated very slowly upon AMP-PNP or ATPγS removal (τdeac ∼ 100 s) implying tight binding between the two NBDs. Despite this apparently tight binding, neither AMP-PNP nor ATPγS activated even the strongest GOF mutant as strongly as ATP. ATPγS-activated wild type channels deactivated more rapidly, indicating that GOF mutations in the cytosolic loops reciprocally/allosterically affect nucleotide occupancy of the NBDs. A GOF mutation substantially rescued defective ATP-dependent gating of G1349D-CFTR, a cystic fibrosis NBD2 signature sequence mutant. Interestingly, the G1349D mutation strongly disrupted activation by AMP-PNP but not by ATPγS, indicating that these analogs interact differently with the NBDs. We conclude that poorly hydrolyzable nucleotides are less effective than ATP at opening CFTR channels even when they bind tightly to the NBDs but are converted to stronger agonists by GOF mutations.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR) in addition to its well defined Cl(-) channel properties regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and non-epithelial cells, whereas the presence of ENaC increases CFTR functional expression. This interregulation is reproduced in Xenopus oocytes where both the open probability and surface expression of wild type CFTR Cl(-) channels are increased when CFTR is co-expressed with alphabetagamma-mouse ENaC (mENaC) and conversely when the activity of mENaC is inhibited after wild type CFTR activation. Using the Xenopus oocyte expression system, different functional regulatory interactions were observed between G551D-CFTR and alphabetagamma-mENaC. The co-expression of G551D-CFTR and alphabetagamma-mENaC resulted in a 5-fold increase in G551D-CFTR Cl(-) current compared with oocytes expressing G551D-CFTR alone. Oocytes co-injected with both G551D-CFTR and ENaC expressed an amiloride-sensitive whole cell current that was similar to that observed before and after G551D-CFTR activation with forskolin/isobutylmethylxanthine. Treatment with genistein both enhanced the functional expression of G551D-CFTR and improved regulatory interactions between G551D-CFTR and ENaC. These data suggest that genistein may be useful in patients with cystic fibrosis and the G551D-CFTR mutation.  相似文献   

9.
Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases) encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE). Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER) by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.  相似文献   

10.
The genetic disease cystic fibrosis (CF) is caused by loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Two CF mutants, G551D and G1349D, affect equivalent residues in the highly conserved LSGGQ motifs that are essential components of the ATP-binding sites of CFTR. Both mutants severely disrupt CFTR channel gating by decreasing mean burst duration (MBD) and prolonging greatly the interburst interval (IBI). To identify small molecules that rescue the gating defects of G551D- and G1349D-CFTR and understand better how these agents work, we used the patch clamp technique to study the effects on G551D- and G1349D-CFTR of phloxine B, pyrophosphate (PP(i)), and 2'-deoxy ATP (2'-dATP), three agents that strongly enhance CFTR channel gating. Phloxine B (5 microm) potentiated robustly G551D-CFTR Cl- channels by altering both MBD and IBI. In contrast, phloxine B (5 microm) decreased the IBI of G1349D-CFTR, but this effect was insufficient to rescue G1349D-CFTR channel gating. PP(i) (5 mm) potentiated weakly G551D-CFTR and was without effect on the G1349D-CFTR Cl- channel. However, by altering both MBD and IBI, albeit with different efficacies, 2'-dATP (1 mm) potentiated both G551D- and G1349D-CFTR Cl- channels. Using the ATP-driven nucleotide-binding domain dimerization model of CFTR channel gating, we suggest that phloxine B, PP(i) and 2'-dATP alter channel gating by distinct mechanisms. We conclude that G551D- and G1349D-CFTR have distinct pharmacological profiles and speculate that drug therapy for CF is likely to be mutation-specific.  相似文献   

11.
Two different Cd2+ uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn2+ uptake system which also takes up Cd2+ and is induced by Mn2+ starvation. The calculated Km and Vmax are 0.26 μM and 3.6 μmol g of dry cell−1 min−1, respectively. Unlike Mn2+ uptake, which is facilitated by citrate and related tricarboxylic acids, Cd2+ uptake is weakly inhibited by citrate. Cd2+ and Mn2+ are competitive inhibitors of each other, and the affinity of the system for Cd2+ is higher than that for Mn2+. The other Cd2+ uptake system is expressed in Mn2+-sufficient cells, and no Km can be calculated for it because uptake is nonsaturable. Mn2+ does not compete for transport through this system, nor does any other tested cation, i.e., Zn2+, Cu2+, Co2+, Mg2+, Ca2+, Fe2+, or Ni2+. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn2+-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn2+ for growth as the parental strain. Mn2+ starvation-induced Cd2+ uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn2+ or Cd2+ accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn2+ and Cd2+ uptake system.  相似文献   

12.
Plant accumulation of Fe and other metals can be enhanced under Fe deficiency. We investigated the influence of Fe status on heavy-metal and divalent-cation uptake in roots of pea (Pisum sativum L. cv Sparkle) seedlings using Cd2+ uptake as a model system. Radiotracer techniques were used to quantify unidirectional 109Cd influx into roots of Fe-deficient and Fe-sufficient pea seedlings. The concentration-dependent kinetics for 109Cd influx were graphically complex and nonsaturating but could be resolved into a linear component and a saturable component exhibiting Michaelis-Menten kinetics. We demonstrated that the linear component was apoplastically bound Cd2+ remaining in the root cell wall after desorption, whereas the saturable component was transporter-mediated Cd2+ influx across the root-cell plasma membrane. The Cd2+ transport system in roots of both Fe-deficient and Fe-sufficient seedlings exhibited similar Michaelis constant values, 1.5 and 0.6 μm, respectively, for saturable Cd2+ influx, whereas the maximum initial velocity for Cd2+ uptake in Fe-deficient seedlings was nearly 7-fold higher than that in Fe-grown seedlings. Investigations into the mechanistic basis for this response demonstrated that Fe-deficiency-induced stimulation of the plasma membrane H+-ATPase did not play a role in the enhanced Cd2+ uptake. Expression studies with the Fe2+ transporter cloned from Arabidopsis, IRT1, indicated that Fe deficiency induced the expression of this transporter, which might facilitate the transport of heavy-metal divalent cations such as Cd2+ and Zn2+, in addition to Fe2+.  相似文献   

13.
A CadDX system that confers resistance to Cd2+ and Zn2+ was identified in Streptococcus salivarius 57.I. Unlike with other CadDX systems, the expression of the cad promoter was negatively regulated by CadX, and the repression was inducible by Cd2+ and Zn2+, similar to what was found for CadCA systems. The lower G+C content of the S. salivarius cadDX genes suggests acquisition by horizontal gene transfer.  相似文献   

14.
We synthesized three types of 11mer substrate, namely the natural substrate S11O and the thiosubstituted substrates S11SpS and S11RpS, in which the respective pro-Sp and pro-Rp oxygen atoms were replaced by sulfur, and subjected them to detailed kinetic analysis in the cleavage reaction catalyzed by a hammerhead ribozyme. In agreement with previous findings, in the presence of Mg2+ or Ca2+ ions the rate of ribozyme-catalyzed cleavage of S11SpS was as high as that of S11O, whereas the corresponding rate for S11RpS was nearly four orders of magnitude lower than that for either S11O or S11SpS. However, the rate of the ribozyme-catalyzed reaction with each of the three substrates was enhanced by Cd2+ ions. Such results have generally been taken as evidence that supports the direct interaction of the sulfur atom at the Rp position of the cleavage site with the added Cd2+ ion. However, our present analysis demonstrates that (i) the added Cd2+ ion binds at the P9 site; (ii) the bound Cd2+ ion at the P9 site replaces two Mg2+ or two Ca2+ ions, an observation that suggests a different mode of interaction with the added Cd2+ ion; and, most importantly and in contrast to the conclusion reached by other investigators, (iii) the Cd2+ ion does not interact with the sulfur atom at the Rp position of the scissile phosphate either in the ground state or in the transition state.  相似文献   

15.
A Cd2+-selective vibrating microelectrode was constructed using a neutral carrier-based Cd ionophore to investigate ion-transport processes along the roots of wheat (Triticum aestivum L.) and two species of Thlaspi, one a Zn/Cd hyperaccumulator and the other a related nonaccumulator. In simple Cd(NO3)2 solutions, the electrode exhibited a Nernstian response in solutions with Cd2+ activities as low as 50 nm. Addition of Ca2+ to the calibration solutions did not influence the slope of the calibration curve but reduced the detection limit to a solution activity of 1 μm Cd2+. Addition of high concentrations of K+ and Mg2+ to the calibration solution to mimic the ionic composition of the cytoplasm affected neither the slope nor the sensitivity of the electrode, demonstrating the pH-insensitive electrode's potential for intracellular investigations. The electrode was assayed for selectivity and was shown to be at least 1000 times more selective for Cd2+ than for any of those potentially interfering ions tested. Flux measurements along the roots of the two Thlaspi species showed no differences in the pattern or the magnitude of Cd2+ uptake within the time frame considered. The Cd2+-selective microelectrode will permit detailed investigations of heavy-metal ion transport in plant roots, especially in the area of phytoremediation.  相似文献   

16.
This study reports surface complexation models (SCMs) for quantifying metal ion adsorption by thermophilic microorganisms. In initial cadmium ion toxicity tests, members of the genus Geobacillus displayed the highest tolerance to CdCl2 (as high as 400 to 3,200 μM). The thermophilic, gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected for further electrophoretic mobility, potentiometric titration, and Cd2+ adsorption experiments to characterize Cd2+ complexation by functional groups within and on the cell wall. Distinct one-site SCMs described the extent of cadmium ion adsorption by both studied Geobacillus sp. strains over a range of pH values and metal/bacteria concentration ratios. The results indicate that a functional group with a deprotonation constant pK value of approximately 3.8 accounts for 66% and 80% of all titratable sites for G. thermocatenulatus and G. stearothermophilus, respectively, and is dominant in Cd2+ adsorption reactions. The results suggest a different type of functional group may be involved in cadmium biosorption for both thermophilic strains investigated here, compared to previous reports for mesophilic bacteria.  相似文献   

17.
HCN channels are thought to be structurally similar to Kv channels, but show much lower selectivity for K+. The ∼3.3 Å selectivity filter of K+ channels is formed by the pore-lining sequence XT(V/I)GYG, with X usually T, and is held stable by key residues in the P-loop. Differences in the P-loop sequence of HCN channels (eg. the pore-lining sequence L478C479IGYG) suggest these residues could account for differences in selectivity between these channel families. Despite being expressed, L478T/C479T HCN4 channels did not produce current. Since threonine in the second position is highly conserved in K+ channels, we also studied C479T channels. Based on permeability ratios (PX/PK), C479T HCN4 channels (K+(1)>Rb+(0.85)>Cs+(0.59)>Li+(0.50)≥Na+(0.49)) were less selective than WT rabbit HCN4 (K+(1)>Rb+(0.48)>Cs+(0.31)≥Na+(0.29)>Li+(0.03)), indicating that the TIGYG sequence is insufficient to confer K+ selectivity to HCN channels. C479T HCN4 channels had an increased permeability to large organic cations than WT HCN4 channels, as well as increased unitary K+ conductance, and altered channel gating. Collectively, these results suggest that HCN4 channels have larger pores than K+ channels and replacement of the cysteine at position 479 with threonine further increases pore size. Furthermore, selected mutations in other regions linked previously to pore stability in K+ channels (ie. S475D, S475E and F471W/K472W) were also unable to confer K+ selectivity to C479T HCN4 channels. Our findings establish the presence of the TIGYG pore-lining sequence does not confer K+ selectivity to rabbit HCN4 channels, and suggests that differences in selectivity of HCN4 versus K+ channels originate from differences outside the P-loop region.  相似文献   

18.
The patch-clamp technique was used to investigate the effects ofthe isoflavone genistein on disease-causing mutations (G551D andF508) of the cystic fibrosis transmembrane conductance regulator (CFTR). In HeLa cells recombinantly expressing thetrafficking-competent G551D-CFTR, the forskolin-stimulated Cl currentswere small, and average open probability of G551D-CFTR wasPo = 0.047 ± 0.019. Addition of genistein activated Cl currents~10-fold, and the Po of G551D-CFTRincreased to 0.49 ± 0.12, which is aPo similar towild-type CFTR. In cystic fibrosis (CF) epithelial cells homozygous forthe trafficking-impaired F508 mutation, forskolin and genistein activated Cl currents only after 4-phenylbutyrate treatment. These datasuggested that genistein activated CFTR mutants that were present inthe cell membrane. Therefore, we tested the effects of genistein in CFpatients with the G551D mutation in nasal potential difference (PD)measurements in vivo. The perfusion of the nasal mucosa of G551D CFpatients with isoproterenol had no effect; however, genisteinstimulated Cl-dependent nasal PD by, on average, 2.4 ± 0.6 mV, which corresponds to 16.9% of the responses (to -adrenergicstimulation) found in healthy subjects.

  相似文献   

19.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, an ATP binding cassette (ABC) protein whose defects cause the deadly genetic disease cystic fibrosis (CF), encompasses two nucleotide binding domains (NBD1 and NBD2). Recent studies indicate that in the presence of ATP, the two NBDs coalesce into a dimer, trapping an ATP molecule in each of the two interfacial composite ATP binding sites (site 1 and site 2). Experimental evidence also suggests that CFTR gating is mainly controlled by ATP binding and hydrolysis in site 2, whereas site 1, which harbors several non-canonical substitutions in ATP-interacting motifs, is considered degenerated. The CF-associated mutation G551D, by introducing a bulky and negatively charged side chain into site 2, completely abolishes ATP-induced openings of CFTR. Here, we report a strategy to optimize site 1 for ATP binding by converting two amino acid residues to ABC consensus (i.e. H1348G) or more commonly seen residues in other ABC proteins (i.e. W401Y,W401F). Introducing either one or both of these mutations into G551D-CFTR confers ATP responsiveness for this disease-associated mutant channel. We further showed that the same maneuver also improved the function of WT-CFTR and the most common CF-associated ΔF508 channels, both of which rely on site 2 for gating control. Thus, our results demonstrated that the degenerated site 1 can be rebuilt to complement or support site 2 for CFTR function. Possible approaches for developing CFTR potentiators targeting site 1 will be discussed.  相似文献   

20.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl channel physiologically important in fluid-transporting epithelia and pathologically relevant in several human diseases. Here, we show that mutations in the C terminus of the first nucleotide binding domain comprising the latest β strands (βc5 and βc6) influence the trafficking, channel activity, and pharmacology of CFTR. We mutated CFTR amino acids located in the βc5-βc6 hairpin, within the βc5 strand (H620Q), within the β-turn linking the two β strands (E621G, G622D), as well as within (S623A, S624A) and at the extremity (G628R) of the βc6 strand. Functional analysis reveals that the current density was largely reduced for G622D and G628R channels compared with wt CFTR, similar for E621G and S624A, but increased for H620Q and S623A. For G622D and G628R, the abnormal activity is likely due to a defective maturation process, as assessed by the augmented activity and mature C-band observed in the presence of the trafficking corrector miglustat. In addition, in presence of the CFTR activator benzo[c]quinolizinium, the CFTR current density compared with that of wt CFTR was abolished for G622D and G628R channels, but similar for H620Q, S623A, and S624A or slightly increased for E621G. Finally, G622D and G628R were activated by the CFTR agonists genistein, RP-107, and isobutylmethylxanthine. Our results identify the C terminus of the CFTR first nucleotide binding domain as an important molecular site for the trafficking of CFTR protein, for the control of CFTR channel gating, and for the pharmacological effect of a dual activity agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号