首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress affects psychomotor profiles and exploratory behavior in response to environmental features. Here we investigated psychomotor and exploratory patterns induced by stress in a simple open-field arena and a complex, multi-featured environment. Groups of rats underwent seven days of restraint stress or no-stress conditions and were individually tested in three versions of the ziggurat task (ZT) that varied according to environmental complexity. The hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis due to stress procedure was evaluated by the pre- and post-stress levels of circulating corticosterone (CORT). Horizontal activity, exploration, and motivation were measured by the number of fields entered, the time spent in the central fields, path length and speed, and stop duration. In addition, vertical exploratory behavior was measured by the times rats climbed onto ziggurats. Stress-induced psychomotor changes were indicated by reduced path length and path speed and increased duration of stops only within the complex arena of the ZT. Rats in stress groups also showed a significant decline in the vertical movements as measured by the number of climbing onto ziggurats. No stress-induced changes were revealed by the simple open-field arena. The exploratory patterns of stressed animals suggest psychomotor inhibition and reduced novelty-seeking behaviors in an environment-dependent manner. Thus, multi-featured arenas that require complex behavioral strategies are ideally suited to reveal the inhibitory effects of stress on psychomotor capabilities in rodents.  相似文献   

2.
Rat exploratory behavior consists of regular excursions into the environment from a preferred place termed a home base. A phase plane representation of excursions reveals a geometrical pattern that changes during exploration in both shape and size. We first show that with time and repeated exposures to the same large environment there is a gradual increase in the length of excursions; each rat has its own characteristic length of excursions; but all rats share a similar rate of excursion growth. As in our experimental setup the rats perform increasingly longer paths from one location, while locomoting back and forth along the walls of the arena, exposure is more extensive at the proximal part of the route, and less at the distal part. We consequently show that the rat's velocity pattern changes concurrently with the increase in excursion length, and in correlation with the level of exposure (familiarity) to places. The primitive velocity pattern consists of slow progression while moving away from base and fast progression while returning to it. During exposure the asymmetry in velocity is inverted. The inversion spreads across successive excursions from the home base outwards. The rate of spread of this inversion is higher than the rate of increase in excursion length, and is similar across rats. Because it spreads more rapidly than the increase in excursion length, the global shape of the excursion trajectory changes. The dynamics of excursion shape share similar properties with the dynamics of excursion length. Both might reflect the same intrinsic constraints on the amount of novelty that a rat can handle per excursion. Received: 16 August 1996 / Accepted in revised form: 20 March 1998  相似文献   

3.
Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually.  相似文献   

4.
Accurate prediction of tumor progression is key for adaptive therapy and precision medicine. Cancer progression models (CPMs) can be used to infer dependencies in mutation accumulation from cross-sectional data and provide predictions of tumor progression paths. However, their performance when predicting complete evolutionary trajectories is limited by violations of assumptions and the size of available data sets. Instead of predicting full tumor progression paths, here we focus on short-term predictions, more relevant for diagnostic and therapeutic purposes. We examine whether five distinct CPMs can be used to answer the question “Given that a genotype with n mutations has been observed, what genotype with n + 1 mutations is next in the path of tumor progression?” or, shortly, “What genotype comes next?”. Using simulated data we find that under specific combinations of genotype and fitness landscape characteristics CPMs can provide predictions of short-term evolution that closely match the true probabilities, and that some genotype characteristics can be much more relevant than global features. Application of these methods to 25 cancer data sets shows that their use is hampered by a lack of information needed to make principled decisions about method choice. Fruitful use of these methods for short-term predictions requires adapting method’s use to local genotype characteristics and obtaining reliable indicators of performance; it will also be necessary to clarify the interpretation of the method’s results when key assumptions do not hold.  相似文献   

5.
Theory predicts that risk taking should be influenced by external (e.g., season) and internal (e.g., breeding condition, sex, and body mass) conditions. We investigated whether these factors are associated with a potentially risky behavior: exploration of a novel environment. We conducted repeated open‐field tests of exploration in a common forest rodent, the yellow‐necked mouse Apodemus flavicollis. Contrary to expectations, the exploration did not vary with the season (spring vs. fall) or the reproductive status of the tested animals. Also unexpectedly, there was an inverted U‐shaped relationship between body mass and exploration: animals with intermediate body mass tended to have the highest exploration tendencies. Males were more exploratory than females. Finally, even after adjusting for the effects of body mass and sex, individuals exhibited consistent, repeatable differences in exploration tendencies (“behavioral types” or “personalities”). The discrepancies between certain broad generalizations and our results suggest that risk taking depends on details of species‐specific biology.  相似文献   

6.
The future is uncertain because some forthcoming events are unpredictable and also because our ability to foresee the myriad consequences of our own actions is limited. Here we studied how humans select actions under such extrinsic and intrinsic uncertainty, in view of an exponentially expanding number of prospects on a branching multivalued visual stimulus. A triangular grid of disks of different sizes scrolled down a touchscreen at a variable speed. The larger disks represented larger rewards. The task was to maximize the cumulative reward by touching one disk at a time in a rapid sequence, forming an upward path across the grid, while every step along the path constrained the part of the grid accessible in the future. This task captured some of the complexity of natural behavior in the risky and dynamic world, where ongoing decisions alter the landscape of future rewards. By comparing human behavior with behavior of ideal actors, we identified the strategies used by humans in terms of how far into the future they looked (their “depth of computation”) and how often they attempted to incorporate new information about the future rewards (their “recalculation period”). We found that, for a given task difficulty, humans traded off their depth of computation for the recalculation period. The form of this tradeoff was consistent with a complete, brute-force exploration of all possible paths up to a resource-limited finite depth. A step-by-step analysis of the human behavior revealed that participants took into account very fine distinctions between the future rewards and that they abstained from some simple heuristics in assessment of the alternative paths, such as seeking only the largest disks or avoiding the smaller disks. The participants preferred to reduce their depth of computation or increase the recalculation period rather than sacrifice the precision of computation.  相似文献   

7.
Fermat’s principle of least time states that light rays passing through different media follow the fastest (and not the most direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat’s principle when forced to travel on two surfaces that differentially affected the ants’ walking speed. Workers of the little fire ant, Wasmannia auropunctata, established “refracted” pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat’s principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals.  相似文献   

8.
Tests assessing the fear of humans by measuring avoidance or approach reactions of the test animals towards humans can be useful tools in welfare assessment schemes. In this study, we wanted to compare tests assessing the reactions of laying hens towards humans in the home environment to a test performed in a novel environment. As well we investigated inter-test correlations in the home environment. We performed several tests to assess the hens’ approach and avoidance reactions towards an unfamiliar human inside the home environment of laying hens in 14 caged flocks and 10 free-range flocks. We measured the reactions of hens to a stationary person and a moving person approaching individual hens in both systems, as well as reactions to a stationary person trying to touch individual hens in non-cage systems and reactions of caged hens to a person passing by. Additionally, a standardised arena test was performed outside the home environment to compare the birds’ avoidance reactions towards an approaching human in a novel environment. In caged hens no significant correlations of tests performed inside the home environment with the arena test could be found, but there were moderate to high correlations (rs > 0.6) with one parameter of the arena test in non-caged hens. The different tests applied inside the home environment correlated significantly and moderately to highly with each other, supporting the validity of these tests to measure fear of humans. The caged laying hens in our study reacted differently in the novel environment from the non-caged birds, indicating that the birds’ reactions towards humans in an unfamiliar environment depend on the housing system. In summary, a comparison of the level of fear of humans between flocks in different housing systems by using an arena test outside the home environment seems difficult and was not possible in the present study.  相似文献   

9.
Neuroimaging has identified many correlates of emotion but has not yet yielded brain representations predictive of the intensity of emotional experiences in individuals. We used machine learning to identify a sensitive and specific signature of emotional responses to aversive images. This signature predicted the intensity of negative emotion in individual participants in cross validation (n =121) and test (n = 61) samples (high–low emotion = 93.5% accuracy). It was unresponsive to physical pain (emotion–pain = 92% discriminative accuracy), demonstrating that it is not a representation of generalized arousal or salience. The signature was comprised of mesoscale patterns spanning multiple cortical and subcortical systems, with no single system necessary or sufficient for predicting experience. Furthermore, it was not reducible to activity in traditional “emotion-related” regions (e.g., amygdala, insula) or resting-state networks (e.g., “salience,” “default mode”). Overall, this work identifies differentiable neural components of negative emotion and pain, providing a basis for new, brain-based taxonomies of affective processes.  相似文献   

10.
When placed in a rectangular aquarium (arena) containing no objects, blindfolded freshwater crayfish ( Cherax destructor ) explore by walking along the walls of the arena. Animals taken from their home tanks and placed in the arena for a 40-min trial each day habituate and exhibit a reduction in their exploratory activity over 4 trials, despite their lack of continuous exposure to the arena. Dishabituation (i.e. an immediate increase in exploratory activity) occurs when animals were placed in the arena after the introduction of short partitions projecting at right angles from the walls. The dishabituation was interpreted as indicating that the animal can detect differences in the spatial configuration of the arena topography. Using dishabituation as a measure, we found that animals responded not only to the presence or absence of the partitions but also to changes in the position of the partitions. Animals with immobilized or lesioned second antennae no longer responded to configurational changes in the spatial arrangement of the partitions in the arena. We conclude that Cherax destructor relies upon the tactile input from its second antennae to detect topographical changes in the environment and that such topographical changes can be retained for at least 24 h. For an organism that forages in and defends a home territory on a daily basis, this seems to be an ecologically relevant time scale.  相似文献   

11.
A comparison of lipid-free polysaccharides from gram-negative bacteria was rapidly accomplished by using high-performance liquid chromatography of underivatized hydrolysates. Examination of a number of such products revealed that, contrary to earlier reports, Xanthomonas campestris lipopolysaccharide contained heptose, together with rhamnose and galactose, but not mannose. The polymers from the methanotrophs “Methylomonas albus” and “Methylosinus trichosporium” contained heptose and glucose, and that from a “Klebsiella aerogenes” strain contained heptose, glucose, and galactose. The absence of heptose from the lipopolysaccharide of Myxococcus xanthus was confirmed.  相似文献   

12.
When we read or listen to language, we are faced with the challenge of inferring intended messages from noisy input. This challenge is exacerbated by considerable variability between and within speakers. Focusing on syntactic processing (parsing), we test the hypothesis that language comprehenders rapidly adapt to the syntactic statistics of novel linguistic environments (e.g., speakers or genres). Two self-paced reading experiments investigate changes in readers’ syntactic expectations based on repeated exposure to sentences with temporary syntactic ambiguities (so-called “garden path sentences”). These sentences typically lead to a clear expectation violation signature when the temporary ambiguity is resolved to an a priori less expected structure (e.g., based on the statistics of the lexical context). We find that comprehenders rapidly adapt their syntactic expectations to converge towards the local statistics of novel environments. Specifically, repeated exposure to a priori unexpected structures can reduce, and even completely undo, their processing disadvantage (Experiment 1). The opposite is also observed: a priori expected structures become less expected (even eliciting garden paths) in environments where they are hardly ever observed (Experiment 2). Our findings suggest that, when changes in syntactic statistics are to be expected (e.g., when entering a novel environment), comprehenders can rapidly adapt their expectations, thereby overcoming the processing disadvantage that mistaken expectations would otherwise cause. Our findings take a step towards unifying insights from research in expectation-based models of language processing, syntactic priming, and statistical learning.  相似文献   

13.
The concept of plant intelligence, as proposed by Anthony Trewavas, has raised considerable discussion. However, plant intelligence remains loosely defined; often it is either perceived as practically synonymous to Darwinian fitness, or reduced to a mere decorative metaphor. A more strict view can be taken, emphasizing necessary prerequisites such as memory and learning, which requires clarifying the definition of memory itself. To qualify as memories, traces of past events have to be not only stored, but also actively accessed. We propose a criterion for eliminating false candidates of possible plant intelligence phenomena in this stricter sense: an “intelligent” behavior must involve a component that can be approximated by a plausible algorithmic model involving recourse to stored information about past states of the individual or its environment. Re-evaluation of previously presented examples of plant intelligence shows that only some of them pass our test.
“You were hurt?” Kumiko said, looking at the scar.Sally looked down. “Yeah.”“Why didn''t you have it removed?”“Sometimes it''s good to remember.”“Being hurt?”“Being stupid.”—(W. Gibson: Mona Lisa Overdrive)
Key words: intelligence, memory, learning, plant development, mathematical models, plant neurobiology, definition of terms  相似文献   

14.
Synopsis Foraging butterflyfishes follow predictable paths as they swim from one food patch to another within their territories and home ranges. The pattern is repeated throughout the day. The behavior is described in species belonging to the coral feeding guild. Habit formation and spatial learning are implicated. Foraging paths are based on learned locations of route specific landmarks. When a coral head is removed the fish look for it in its former location. If pairs of foraging fish are deflected from the path, they resume their routine pattern at the first landmark they encounter. Periodically, fish make excursions of 30 m or more to distant parts of the reef. Usually they follow different paths on the outbound and homeward legs of these excursions. The critical question is: Are the paths novel? If they are, it is evidence for the use of cognitive maps. Certainly fishes living in the highly structured coral reef environment are prime candidates to use cognitive maps in their orientation behavior.  相似文献   

15.
Wang J  Ross KG  Keller L 《PLoS genetics》2008,4(7):e1000127
Explaining how interactions between genes and the environment influence social behavior is a fundamental research goal, yet there is limited relevant information for species exhibiting natural variation in social organization. The fire ant Solenopsis invicta is characterized by a remarkable form of social polymorphism, with the presence of one or several queens per colony and the expression of other phenotypic and behavioral differences being completely associated with allelic variation at a single Mendelian factor marked by the gene Gp-9. Microarray analyses of adult workers revealed that differences in the Gp-9 genotype are associated with the differential expression of an unexpectedly small number of genes, many of which have predicted functions, implying a role in chemical communication relevant to the regulation of colony queen number. Even more surprisingly, worker gene expression profiles are more strongly influenced by indirect effects associated with the Gp-9 genotypic composition within their colony than by the direct effect of their own Gp-9 genotype. This constitutes an unusual example of an “extended phenotype” and suggests a complex genetic architecture with a single Mendelian factor, directly and indirectly influencing the individual behaviors that, in aggregate, produce an emergent colony-level phenotype.  相似文献   

16.
The RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising drug target for coronavirus disease 2019 (COVID-19) because it plays the most important role in the replication of the RNA genome. Nucleotide analogs such as remdesivir and favipiravir are thought to interfere with the RNA replication by RdRp. More specifically, they are expected to compete with nucleoside triphosphates, such as ATP. However, the process in which these drug molecules and nucleoside triphosphates are taken up by RdRp remains unknown. In this study, we performed all-atom molecular dynamics simulations to clarify the recognition mechanism of RdRp for these drug molecules and ATP that were at a distance. The ligand recognition ability of RdRp decreased in the order of remdesivir, favipiravir, and ATP. We also identified six recognition paths. Three of them were commonly found in all ligands, and the remaining three paths were ligand-dependent ones. In the common two paths, it was observed that the multiple lysine residues of RdRp carried the ligands to the binding site like a “bucket brigade.” In the remaining common path, the ligands directly reached the binding site. Our findings contribute to the understanding of the efficient ligand recognition by RdRp at the atomic level.  相似文献   

17.
Contrary to predictions from Expected Utility Theory and Game Theory, when making economic decisions in interpersonal situations, people take the interest of others into account and express various forms of solidarity, even in one-shot interactions with anonymous strangers. Research in other-regarding behavior is dominated by behavioral economical and evolutionary biological approaches. Psychological theory building, which addresses mental processes underlying other-regarding behavior, is rare. Based on Relational Models Theory (RMT, [1]) and Relationship Regulation Theory (RRT, [2]) it is proposed that moral motives influence individuals’ decision behavior in interpersonal situations via conscious and unconscious (automatic) processes. To test our propositions we developed the ‘Dyadic Solidarity Game’ and its solitary equivalent, the ‘Self-Insurance Game’. Four experiments, in which the moral motives “Unity” and “Proportionality” were manipulated, support the propositions made. First, it was shown that consciously activated moral motives (via framing of the overall goal of the experiment) and unconsciously activated moral motives (via subliminal priming) influence other-regarding behavior. Second, this influence was only found in interpersonal, not in solitary situations. Third, by combining the analyses of the two experimental games the extent to which participants apply the Golden Rule (“treat others how you wish to be treated”) could be established. Individuals with a “Unity” motive treated others like themselves, whereas individuals with a “Proportionality” motive gave others less then they gave themselves. The four experiments not only support the assumption that morals matter in economic games, they also deliver new insights in how morals matter in economic decision making.  相似文献   

18.
A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and “snapshots” of the simulation trajectories have been used to compute the cytoplasm''s effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited “crowding” effect must be included in attempts to understand macromolecular behavior in vivo.  相似文献   

19.
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.  相似文献   

20.
Stomatal control of water loss was studied in a low pressure environment by using detached leaves of Crassula argentea Thunb., Peperomia obtusifolia (L.) A. Dietr., and Setcreasea pallida Rose cv. `Purple Heart.' The transient behavior of temperature and rate of mass loss were determined. A model based on free molecule gas flow was developed and used to predict mass loss to within the same order of magnitude of experimentally obtained results. By utilizing this model, the transient behavior of stomatal aperture was determined. The “nonphysiological” experimental conditions do not inhibit the closing process; therefore, this new experimental technique is a valid method of studying stomatal closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号