首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ transport through mitochondrial Ca2+ uniporter is the primary Ca2+ uptake mechanism in respiring mitochondria. Thus, the uniporter plays a key role in regulating mitochondrial Ca2+. Despite the importance of mitochondrial Ca2+ to metabolic regulation and mitochondrial function, and to cell physiology and pathophysiology, the structure and composition of the uniporter functional unit and kinetic mechanisms associated with Ca2+ transport into mitochondria are still not well understood. In this study, based on available experimental data on the kinetics of Ca2+ transport via the uniporter, a mechanistic kinetic model of the uniporter is introduced. The model is thermodynamically balanced and satisfactorily describes a large number of independent data sets in the literature on initial or pseudo-steady-state influx rates of Ca2+ via the uniporter measured under a wide range of experimental conditions. The model is derived assuming a multi-state catalytic binding and Eyring's free-energy barrier theory-based transformation mechanisms associated with the carrier-mediated facilitated transport and electrodiffusion. The model is a great improvement over the previous theoretical models of mitochondrial Ca2+ uniporter in the literature in that it is thermodynamically balanced and matches a large number of independently published data sets on mitochondrial Ca2+ uptake. This theoretical model will be critical in developing mechanistic, integrated models of mitochondrial Ca2+ handling and bioenergetics which can be helpful in understanding the mechanisms by which Ca2+ plays a role in mediating signaling pathways and modulating mitochondrial energy metabolism.  相似文献   

2.
Sodium-calcium antiporter is the primary efflux pathway for Ca2+ in respiring mitochondria, and hence plays an important role in mitochondrial Ca2+ homeostasis. Although experimental data on the kinetics of Na+-Ca2+ antiporter are available, the structure and composition of its functional unit and kinetic mechanisms associated with the Na+-Ca2+ exchange (including the stoichiometry) remains unclear. To gain a quantitative understanding of mitochondrial Ca2+ homeostasis, a biophysical model of Na+-Ca2+ antiporter is introduced that is thermodynamically balanced and satisfactorily describes a number of independent data sets under a variety of experimental conditions. The model is based on a multistate catalytic binding mechanism for carrier-mediated facilitated transport and Eyring's free energy barrier theory for interconversion and electrodiffusion. The model predicts the activating effect of membrane potential on the antiporter function for a 3Na+:1Ca2+ electrogenic exchange as well as the inhibitory effects of both high and low pH seen experimentally. The model is useful for further development of mechanistic integrated models of mitochondrial Ca2+ handling and bioenergetics to understand the mechanisms by which Ca2+ plays a role in mitochondrial signaling pathways and energy metabolism.  相似文献   

3.
Ca2+ is an important regulatory ion and alteration of mitochondrial Ca2+ homeostasis can lead to cellular dysfunction and apoptosis. Ca2+ is transported into respiring mitochondria via the Ca2+ uniporter, which is known to be inhibited by Mg2+. This uniporter-mediated mitochondrial Ca2+ transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg2+ inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg2+ and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg2+ inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca2+ uptake. The model also appropriately depicts the inhibitory effect of Mg2+ on the uniporter function, in which Ca2+ uptake is hyperbolic in the absence of Mg2+ and sigmoid in the presence of Mg2+. The model suggests a mixed-type inhibition mechanism for Mg2+ inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca2+ handling to understand the mechanisms by which Ca2+ mediates signaling pathways and modulates energy metabolism.  相似文献   

4.
5.
We reported that NAD+-dependent SIRT1, RELB, and SIRT6 nuclear proteins in monocytes regulate a switch from the glycolysis-dependent acute inflammatory response to fatty acid oxidation-dependent sepsis adaptation. We also found that disrupting SIRT1 activity during adaptation restores immunometabolic homeostasis and rescues septic mice from death. Here, we show that nuclear SIRT1 guides RELB to differentially induce SIRT3 expression and also increases mitochondrial biogenesis, which alters bioenergetics during sepsis adaptation. We constructed this concept using TLR4-stimulated THP1 human promonocytes, a model that mimics the initiation and adaptation stages of sepsis. Following increased expression, mitochondrial SIRT3 deacetylase activates the rate-limiting tricarboxylic acid cycle (TCA) isocitrate dehydrogenase 2 and superoxide dismutase 2, concomitant with increases in citrate synthase activity. Mitochondrial oxygen consumption rate increases early and decreases during adaptation, parallel with modifications to membrane depolarization, ATP generation, and production of mitochondrial superoxide and whole cell hydrogen peroxide. Evidence of SIRT1-RELB induction of mitochondrial biogenesis included increases in mitochondrial mass, mitochondrial-to-nuclear DNA ratios, and both nuclear and mitochondrial encoded proteins. We confirmed the SIRT-RELB-SIRT3 adaptation link to mitochondrial bioenergetics in both TLR4-stimulated normal and sepsis-adapted human blood monocytes and mouse splenocytes. We also found that SIRT1 inhibition ex vivo reversed the sepsis-induced changes in bioenergetics.  相似文献   

6.
Mitochondrial calcium uptake stimulates bioenergetics and drives energy production in metabolic tissue. It is unknown how a calcium-mediated acceleration in matrix bioenergetics would influence cellular metabolism in glycolytic cells that do not require mitochondria for ATP production. Using primary human endothelial cells (ECs), we discovered that repetitive cytosolic calcium signals (oscillations) chronically loaded into the mitochondrial matrix. Mitochondrial calcium loading in turn stimulated bioenergetics and a persistent elevation in NADH. Rather than serving as an impetus for mitochondrial ATP generation, matrix NADH rapidly transmitted to the cytosol to influence the activity and expression of cytosolic sirtuins, resulting in global changes in protein acetylation. In endothelial cells, the mitochondrion-driven reduction in both the cytosolic and mitochondrial NAD+/NADH ratio stimulated a compensatory increase in SIRT1 protein levels that had an anti-inflammatory effect. Our studies reveal the physiologic importance of mitochondrial bioenergetics in the metabolic regulation of sirtuins and cytosolic signaling cascades.  相似文献   

7.
Pradhan RK  Qi F  Beard DA  Dash RK 《Biophysical journal》2011,101(9):2071-2081
Ca(2+) is an important regulatory ion and alteration of mitochondrial Ca(2+) homeostasis can lead to cellular dysfunction and apoptosis. Ca(2+) is transported into respiring mitochondria via the Ca(2+) uniporter, which is known to be inhibited by Mg(2+). This uniporter-mediated mitochondrial Ca(2+) transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg(2+) inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg(2+) and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg(2+) inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca(2+) uptake. The model also appropriately depicts the inhibitory effect of Mg(2+) on the uniporter function, in which Ca(2+) uptake is hyperbolic in the absence of Mg(2+) and sigmoid in the presence of Mg(2+). The model suggests a mixed-type inhibition mechanism for Mg(2+) inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca(2+) handling to understand the mechanisms by which Ca(2+) mediates signaling pathways and modulates energy metabolism.  相似文献   

8.
A growing body of evidence supports a role of the gut microbiota in regulating diverse physiological processes, including neural function and metabolism via the gut-brain axis. Infantile spasms syndrome is an early-onset epileptic encephalopathy associated with perturbed brain mitochondrial bioenergetics. Employing a neonatal rat model of infantile spasms, mitochondria respirometry and biochemical analyses, the present study reveals that gut microbiota manipulation by diet, antibiotics and probiotics have the potential to enhance hippocampal mitochondrial bioenergetics. Although preliminary in nature, our data reveal that microbial manipulation that regulates brain mitochondrial function may be a novel strategy for the treatment of epileptic disorders.  相似文献   

9.
The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1alpha. Overexpression of PGC-1alpha rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1alpha expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1alpha in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1alpha and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1alpha. Moreover, PGC-1alpha is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle.  相似文献   

10.
Bazil JN  Dash RK 《PloS one》2011,6(6):e21324
Mitochondria possess a remarkable ability to rapidly accumulate and sequester Ca2+. One of the mechanisms responsible for this ability is believed to be the rapid mode (RaM) of Ca2+ uptake. Despite the existence of many models of mitochondrial Ca2+ dynamics, very few consider RaM as a potential mechanism that regulates mitochondrial Ca2+ dynamics. To fill this gap, a novel mathematical model of the RaM mechanism is developed herein. The model is able to simulate the available experimental data of rapid Ca2+ uptake in isolated mitochondria from both chicken heart and rat liver tissues with good fidelity. The mechanism is based on Ca2+ binding to an external trigger site(s) and initiating a brief transient of high Ca2+ conductivity. It then quickly switches to an inhibited, zero-conductive state until the external Ca2+ level is dropped below a critical value (∼100–150 nM). RaM''s Ca2+- and time-dependent properties make it a unique Ca2+ transporter that may be an important means by which mitochondria take up Ca2+ in situ and help enable mitochondria to decode cytosolic Ca2+ signals. Integrating the developed RaM model into existing models of mitochondrial Ca2+ dynamics will help elucidate the physiological role that this unique mechanism plays in mitochondrial Ca2+-homeostasis and bioenergetics.  相似文献   

11.
It is generally accepted that mitochondrial Ca2+ controls the pace of mitochondrial bioenergetics and thus ATP production. Szibor et al. challenge this paradigm, proposing that the balance between ATP consumption and production depends on mitochondrial pyruvate supply via the malate-aspartate shuttle (MAS) and is controlled by cytosolic Ca2+.  相似文献   

12.
ObjectivesThe alteration of bioenergetics by oocytes in response to the demands of various biological processes plays a critical role in maintaining normal cellular physiology. However, little is known about the association between energy sensing and energy production with energy‐dependent cellular processes like meiosis.Materials and methodsWe demonstrated that cell cycle‐dependent mitochondrial Ca2+ connects energy sensing to mitochondrial activity in meiosis progression within mouse oocytes. Further, we established a model in mouse oocytes using siRNA knockdowns that target mitochondrial calcium uniporters (MCUs) in order to inhibit mitochondrial Ca2+ concentrations.ResultsDecreased numbers of oocytes successfully progressed to the germinal vesicle stage and extruded the first polar body during in vitro culture after inhibition, while spindle checkpoint‐dependent meiosis was also delayed. Mitochondrial Ca2+ levels changed, and this was followed by altered mitochondrial masses and ATP levels within oocytes during the entirety of meiosis progression. Abnormal mitochondrial Ca2+ concentrations in oocytes then hindered meiotic progress and activated AMP‐activated protein kinase (AMPK) signalling that is associated with gene expression.ConclusionsThese data provide new insight into the protective role that MCU‐dependent mitochondrial Ca2+ signalling plays in meiotic progress, in addition to demonstrating a new mechanism of mitochondrial energy regulation by AMPK signalling that influences meiotic maturation.  相似文献   

13.
This study demonstrates that Ca2+ stimulates mitochondrial energy metabolism during spleen lymphocyte activation in response to the ascitic Walker 256 tumor in rats. Intracellular Ca2+ concentrations, phosphorylated protein kinase C (pPKC) levels, Bcl-2 protein contents, interleukin-2 (IL-2) levels, mitochondrial uncoupling protein-2 (UCP-2) contents and reactive oxygen species (ROS) were significantly elevated in these activated lymphocytes. Mitochondria of activated lymphocytes exhibited high free Ca2+ concentrations in the matrix and enhanced oligomycin-sensitive oxygen consumption, indicating an increased rate of oxidative phosphorylation. The production of ROS was largely decreased by diphenylene iodinium in the activated lymphocytes, suggesting that NADPH oxidase is the prevalent source of these species. Accumulation of UCP-2 and the anti-apoptotic protein Bcl-2 is probably important to prevent mitochondrial dysfunction and cell death elicited by the sustained high levels of intracellular Ca2+ and ROS and may explain the observed higher resistance from activated lymphocytes against the opening of the mitochondrial membrane permeability pore (MPT). All these changes were blocked by pretreatment of the rats with verapamil, an L-type Ca2+ channel antagonist. These data demonstrate a central role of Ca2+ in the control of mitochondrial bioenergetics in spleen lymphocytes during the immune response to cancer.  相似文献   

14.
We present an integrated thermokinetic model describing control of cardiac mitochondrial bioenergetics. The model describes the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and mitochondrial Ca(2+) handling. The kinetic component of the model includes effectors of the TCA cycle enzymes regulating production of NADH and FADH(2), which in turn are used by the electron transport chain to establish a proton motive force (Delta mu(H)), driving the F(1)F(0)-ATPase. In addition, mitochondrial matrix Ca(2+), determined by Ca(2+) uniporter and Na(+)/Ca(2+) exchanger activities, regulates activity of the TCA cycle enzymes isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase. The model is described by twelve ordinary differential equations for the time rate of change of mitochondrial membrane potential (Delta Psi(m)), and matrix concentrations of Ca(2+), NADH, ADP, and TCA cycle intermediates. The model is used to predict the response of mitochondria to changes in substrate delivery, metabolic inhibition, the rate of adenine nucleotide exchange, and Ca(2+). The model is able to reproduce, qualitatively and semiquantitatively, experimental data concerning mitochondrial bioenergetics, Ca(2+) dynamics, and respiratory control. Significant increases in oxygen consumption (V(O(2))), proton efflux, NADH, and ATP synthesis, in response to an increase in cytoplasmic Ca(2+), are obtained when the Ca(2+)-sensitive dehydrogenases are the main rate-controlling steps of respiratory flux. These responses diminished when control is shifted downstream (e.g., the respiratory chain or adenine nucleotide translocator). The time-dependent behavior of the model, under conditions simulating an increase in workload, closely reproduces experimentally observed mitochondrial NADH dynamics in heart trabeculae subjected to changes in pacing frequency. The steady-state and time-dependent behavior of the model support the hypothesis that mitochondrial matrix Ca(2+) plays an important role in matching energy supply with demand in cardiac myocytes.  相似文献   

15.
With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging‐related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction‐induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging‐related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.  相似文献   

16.
Bcl-2 family proteins, known for their apoptosis functioning at the mitochondria, have been shown to localize to other cellular compartments to mediate calcium (Ca2+) signals. Since the proper supply of Ca2+ in cells serves as an important mechanism for cellular survival and bioenergetics, we propose an integrating role for Bcl-2 family proteins in modulating Ca2+ signaling. The endoplasmic reticulum (ER) is the main Ca2+ storage for the cell and Bcl-2 family proteins competitively regulate its Ca2+ concentration. Bcl-2 family proteins also regulate the flux of Ca2+ from the ER by physically interacting with inositol 1,4,5-trisphosphate receptors (IP3Rs) to mediate their opening. Type 1 IP3Rs reside at the bulk ER to coordinate cytosolic Ca2+ signals, while type 3 IP3Rs reside at mitochondria-associated ER membrane (MAM) to facilitate mitochondrial Ca2+ uptake. In healthy cells, mitochondrial Ca2+ drives pyruvate into the citric acid (TCA) cycle to facilitate ATP production, while a continuous accumulation of Ca2+ can trigger the release of cytochrome c, thus initiating apoptosis. Since multiple organelles and Bcl-2 family proteins are involved in Ca2+ signaling, we aim to clarify the role that Bcl-2 family proteins play in facilitating Ca2+ signaling and how mitochondrial Ca2+ is relevant in both bioenergetics and apoptosis. We also explore how these insights could be useful in controlling bioenergetics in apoptosis-resistant cell lines.  相似文献   

17.
The three adenine nucleotide translocator ({ANT1} to {ANT3}) isoforms, differentially expressed in human cells, play a crucial role in cell bioenergetics by catalyzing ADP and ATP exchange across the mitochondrial inner membrane. In contrast to differentiated tissue cells, transformed cells, and their ρ0 derivatives, i.e. cells deprived of mitochondrial DNA, sustain a high rate of glycolysis. We compared the expression pattern of {ANT} isoforms in several transformed human cell lines at different stages of the cell cycle. The level of {ANT2} expression and glycolytic ATP production in these cell lines were in keeping with their metabolic background and their state of differentiation. The sensitivity of the mitochondrial inner membrane potential (Δψ) to several inhibitors of glycolysis and oxidative phosphorylation confirmed this relationship. We propose a new model for ATP uptake in cancer cells implicating the {ANT2} isoform, in conjunction with hexokinase II and the β subunit of mitochondrial ATP synthase, in the Δψ maintenance and in the aggressiveness of cancer cells.  相似文献   

18.
The acute systemic inflammatory response syndrome (SIRS) and multiorgan dysfunction (MOD) that occur in large burn injuries may be attributed, in part, to immunosuppressive responses such as decreased lymphocytes. However, the mitochondrial bioenergetics of lymphocytes after severe burn injury are poorly understood. The purpose of this study was to examine mitochondrial function of lymphocytes following severe burns in a swine model. Anesthetized Yorkshire swine (n = 17) sustained 40% total body surface area full-thickness contact burns. Blood was collected at pre-injury (Baseline; BL) and at 24 and 48 h after injury for complete blood cell analysis, flow cytometry, cytokine analysis, and ficoll separation of intact lymphocytes for high-resolution mitochondrial respirometry analysis. While neutrophil numbers increased, a concomitant decrease was found in lymphocytes (P < 0.001) after burn injury, which was not specific to CD4+ or CD8+ lymphocytes. No changes in immune cell population were observed from 24 h to 48 h post-injury. IL 12-23 decreased while a transient increase in IL 4 was found from BL to 24h (P < 0.05). CRP progressively increased from BL to 24h (P < 0.05) and 48h (P < 0.001) post-injury. Routine and maximal mitochondrial respiration progressively increased from BL to 24h (P < 0.05) and 48 h post-injury (P < 0.001). No changes were found in leak respiration or residual oxygen consumption. When considering the reduction in lymphocyte number, the total peripheral lymphocyte bioenergetics per volume of blood significantly decreased from BL to 24h and 48h (P < 0.05). For the first time, we were able to measure mitochondrial activity in intact lymphocyte mitochondria through high-resolution respirometry in a severely burned swine model. Our data showed that the non-specific reduction in peripheral T cells after injury was larger than the increased mitochondrial activity in those cells, which may be a compensatory mechanism for the total reduction in lymphocytes. Additional studies in the metabolic activation of T cell subpopulations may provide diagnostic or therapeutic targets after severe burn injury.  相似文献   

19.
Monitoring the bioenergetics of leucocytes is now emerging as an important approach in translational research to detect mitochondrial dysfunction in blood or other patient samples. Using the mitochondrial stress test, which involves the sequential addition of mitochondrial inhibitors to adherent leucocytes, we have calculated a single value, the Bioenergetic Health Index (BHI), which represents the mitochondrial function in cells isolated from patients. In the present report, we assess the BHI of monocytes isolated from the post-operative blood and post-operative pericardial fluid (PO-PCF) from patients undergoing cardiac surgery. Analysis of the bioenergetics of monocytes isolated from patients’ PO-PCF revealed a profound decrease in mitochondrial function compared with monocytes isolated from their blood or from healthy controls. Further, patient blood monocytes showed no significant difference in the individual energetic parameters from the mitochondrial stress test but, when integrated into the BHI evaluation, there was a significant decrease in BHI compared with healthy control monocytes. These data support the utility of BHI measurements in integrating the individual parameters from the mitochondrial stress test into a single value. Supporting our previous finding that the PO-PCF is pro-oxidant, we found that exposure of rat cardiomyocytes to PO-PCF caused a significant loss of mitochondrial membrane potential and increased reactive oxygen species (ROS). These findings support the hypothesis that integrated measures of bioenergetic health could have prognostic and diagnostic value in translational bioenergetics.  相似文献   

20.
Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号