首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Analysis of sterol distribution and transport in living cells has been hampered by the lack of bright, photostable fluorescent sterol derivatives that closely resemble cholesterol. In this study, we employed atomistic simulations and experiments to characterize a cholesterol compound with fluorescent boron dipyrromethene difluoride linked to sterol carbon-24 (BODIPY-cholesterol). This probe packed in the membrane and behaved similarly to cholesterol both in normal and in cholesterol-storage disease cells and with trace amounts allowed the visualization of sterol movement in living systems. Upon injection into the yolk sac, BODIPY-cholesterol did not disturb zebrafish development and was targeted to sterol-enriched brain regions in live fish. We conclude that this new probe closely mimics the membrane partitioning and trafficking of cholesterol and, because of its excellent fluorescent properties, enables the direct monitoring of sterol movement by time-lapse imaging using trace amounts of the probe. This is, to our knowledge, the first cholesterol probe that fulfills these prerequisites.  相似文献   

2.
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial‐temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light‐driven timer concept that could report relative protein ages at specific sub‐cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light‐driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible “ruler” for studying temporal hierarchy of spatially ordered processes with exquisite spatial‐temporal resolution. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
We demonstrate the applicability of Single Plane Illumination Microscopy to Transient State Imaging (TRAST), offering sensitive microenvironmental information together with optical sectioning and reduced overall excitation light exposure of the specimen. The concept is verified by showing that transition rates can be determined accurately for free dye in solution and that fluorophore transition rates can be resolved pixel‐wise in live cells. Furthermore, we derive a new theoretical framework for analyzing TRAST data acquired with arbitrary duty cycle pulse trains. By this analysis it is possible to reduce the overall measurement time and thereby enhance the frame rates in TRAST imaging. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
Live-cell microscopy imaging of fluorescent-tagged fusion proteins is an essential tool for cell biologists. Total internal reflection fluorescence microscopy (TIRFM) has joined confocal microscopy as a complementary system for the imaging of cell surface protein dynamics in mammalian and yeast systems because of its high temporal and spatial resolution. Here we present an alternative to TIRFM, termed variable-angle epifluorescence microscopy (VAEM), for the visualization of protein dynamics at or near the plasma membrane of plant epidermal cells and root hairs in whole, intact seedlings that provides high-signal, low-background and near real-time imaging. VAEM uses highly oblique subcritical incident angles to decrease background fluorophore excitation. We discuss the utilities and advantages of VAEM for imaging of fluorescent fusion-tagged marker proteins in studying cortical cytoskeletal and membrane proteins. We believe that the application of VAEM will be an invaluable imaging tool for plant cell biologists.  相似文献   

5.
Pyrene-labeled analogs of fatty acids have been studied as probes of lipid metabolism in vitro and in cultured cells. Procedures for the synthesis of complex pyrenyl lipids and the analytical methods for their separation and quantification are described. Pyrenyl-lipids have been used to quantify the relationship between lipid structure and the rates of spontaneous lipid transfer. Modifications of these methods have also been used to monitor protein-mediated lipid transfer, lipolysis and lipid translocation across bilayer membranes. According to several criteria, pyrene dodecanoic acid has been identified as a good analog of some naturally occurring fatty acids. Digital imaging microscopy has been used to monitor the rate of accumulation of pyrenyl lipids in living cells.  相似文献   

6.
The advent of GFP imaging has led to a revolution in the study of live cell protein dynamics. Ease of access to fluorescently tagged proteins has led to their widespread application and demonstrated the power of studying protein dynamics in living cells. This has spurred development of next generation approaches enabling not only the visualization of protein movements, but correlation of a protein's dynamics with its changing structural state or ligand binding. Such methods make use of fluorescence resonance energy transfer and dyes that report changes in their environment, and take advantage of new chemistries for site-specific protein labeling.  相似文献   

7.
Alveolar type II (ATII) cells in the peripheral human lung spontaneously differentiate toward ATI cells, thus enabling air‐blood barrier formation. Here, linear Raman and coherent anti‐Stokes Raman scattering (CARS) microscopy are applied to study cell differentiation of freshly isolated ATII cells. The Raman spectra can successfully be correlated with gradual morphological and molecular changes during cell differentiation. Alveolar surfactant rich vesicles in ATII cells are identified based on phospholipid vibrations, while ATI‐like cells are characterized by the absence of vesicular structures. Complementary, CARS microscopy allows for three‐dimensional visualization of lipid vesicles within ATII cells and their secretion, while hyperspectral CARS enables the distinction between cellular proteins and lipids according to their vibrational signatures. This study paves the path for further label‐free investigations of lung cells and the role of the pulmonary surfactant, thus also providing a basis for rational development of future lung therapeutics.   相似文献   

8.
Mitochondria contribute to redox and calcium balance, and apoptosis thus regulating cellular fate. In the present study, mitochondrial staining applying a novel dye, V07‐07059, was performed in human embryonic kidney cells, a human vascular endothelial cell line and primary human mononuclear cells. The new fluorescent mega Stokes dye (peak excitation: 488 nm, peak emission: 554 nm) showed superior fluorescent properties and stability. V07‐07059 stains mitochondria dependent on their membrane potential and is safe to use in vitro and in vivo. Unlike other dyes applied in this context (e.g. Tetramethylrhodamine methyl ester), V07‐07059 only marginally inhibits mitochondrial respiration and function. V07‐07059 enables real time imaging of mitochondrial trafficking and remodeling. Prolonged staining with V07‐07059 demonstrated the dyes suitability as a novel probe to track cells. In comparison to the widely used standard for cell proliferation and tracking studies 5(6)‐diacetate N‐succinimidyl ester, V07‐07059 proved superior regarding toxicity and photostability.

  相似文献   


9.
The nuclear pore complex (NPC) and its relationship to the nuclear envelope (NE) was characterized in living cells using POM121-green fluorescent protein (GFP) and GFP-Nup153, and GFP-lamin B1. No independent movement of single pore complexes was found within the plane of the NE in interphase. Only large arrays of NPCs moved slowly and synchronously during global changes in nuclear shape, strongly suggesting mechanical connections which form an NPC network. The nuclear lamina exhibited identical movements. NPC turnover measured by fluorescence recovery after photobleaching of POM121 was less than once per cell cycle. Nup153 association with NPCs was dynamic and turnover of this nucleoporin was three orders of magnitude faster. Overexpression of both nucleoporins induced the formation of annulate lamellae (AL) in the endoplasmic reticulum (ER). Turnover of AL pore complexes was much higher than in the NE (once every 2.5 min). During mitosis, POM121 and Nup153 were completely dispersed and mobile in the ER (POM121) or cytosol (Nup153) in metaphase, and rapidly redistributed to an immobilized pool around chromatin in late anaphase. Assembly and immobilization of both nucleoporins occurred before detectable recruitment of lamin B1, which is thus unlikely to mediate initiation of NPC assembly at the end of mitosis.  相似文献   

10.
11.
Methods for specific immobilization, isolation and labeling of proteins are central to the elucidation of cellular functions. Based on bacterial repressor proteins, which bind to specific target sequences in response to small molecules (macrolide and tetracycline antibiotics) or environmental parameters (temperature), we have developed a set of protein tags (RepTAGs), which enable reversible immobilization of the protein of interest on a solid support for the isolation and quantification as well as for the specific labeling of target proteins with fluorescent dyes for tracking them within a complex protein mixture. Similarly, live mammalian cells were specifically labeled with a fluorescent operator sequence bound to RepTAGs, which were directed towards the cell surface for easy discrimination between transfected and untransfected cell populations. Based on the drug-responsive RepTAG-DNA interactions, it was also possible to quantify or discover antibiotics in environmental samples or compound libraries by means of rapid, sensitive detection methods involving fluorescence polarization and bioluminescence. We believe that the universally applicable RepTAGs will become essential for the analysis and manipulation of proteins in the most diverse areas of protein chemistry and cell biology.  相似文献   

12.
13.
Mitochondria are incredibly dynamic organelles that undergo continuous fission and fusion events to control morphology, which profoundly impacts cell physiology including cell cycle progression. This is highlighted by the fact that most major human neurodegenerative diseases are due to specific disruptions in mitochondrial fission or fusion machinery and null alleles of these genes result in embryonic lethality. To gain a better understanding of the pathophysiology of such disorders, tools for the in vivo assessment of mitochondrial dynamics are required. It would be particularly advantageous to simultaneously image mitochondrial fission‐fusion coincident with cell cycle progression. To that end, we have generated a new transgenic reporter mouse, called mito::mKate2 that ubiquitously expresses a mitochondria localized far‐red mKate2 fluorescent protein. Here we show that mito::mKate2 mice are viable and fertile and that mKate2 fluorescence can be spectrally separated from the previously developed Fucci cell cycle reporters. By crossing mito::mKate2 mice to the ROSA26R‐mTmG dual fluorescent Cre reporter line, we also demonstrate the potential utility of mito::mKate2 for genetic mosaic analysis of mitochondrial phenotypes.  相似文献   

14.
15.
We describe a modification and post‐functionalization technique for a donor–acceptor–donor type monomer; 6‐(4,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)‐2H‐benzo[d][1,2, 3]triazol‐2‐yl)hexan‐1‐amine. Folic acid was attached to the fluorescent structure. The conjugation was confirmed via NMR and Fourier transform infrared analyses. Cytotoxicity was investigated and the comparison of association of targeted monomeric structures in tumor cells was monitored via fluorescence microscopy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:952–959, 2014  相似文献   

16.
The Ca2+ and membrane binding protein annexin 2 can form a heterotetrameric complex with the S100A10 protein and this complex is thought to serve a bridging or scaffolding function in the membrane underlying cytoskeleton. To elucidate which of the subunits targets the complex to the subplasmalemmal region in live cells we employed YFP/CFP fusion proteins and live cell imaging in HepG2 cells. We show that monomeric annexin 2 is targeted to the plasma membrane whereas non-complexed S100A10 acquires a general cytosolic distribution. Co-expression of S100A10 together with annexin 2 and the resulting complex formation, however, lead to a recruitment of S100A10 to the plasma membrane thus identifying annexin 2 as the membrane targeting subunit.  相似文献   

17.
18.
Fluorescent proteins have proven to be important tools for in vitro live imaging of parasites and for imaging of parasites within the living host by intravital microscopy. We observed that a red fluorescent transgenic malaria parasite of rodents, Plasmodium berghei-RedStar, is suitable for in vitro live imaging experiments but bleaches rapidly upon illumination in intravital imaging experiments using mice. We have therefore generated two additional transgenic parasite lines expressing the novel red fluorescent proteins tdTomato and mCherry, which have been reported to be much more photostable than first- and second-generation red fluorescent proteins including RedStar. We have compared all three red fluorescent parasite lines for their use in in vitro live and intravital imaging of P. berghei blood and liver parasite stages, using both confocal and wide-field microscopy. While tdTomato bleached almost as rapidly as RedStar, mCherry showed improved photostability and was bright in all experiments performed.  相似文献   

19.
T Lenn  MC Leake 《Open biology》2012,2(6):120090
In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号