首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic reprogramming by embryonic stem cell-specific miR-302/367 cluster has shown some tumor suppressive effects in cancer cells of different tissues such as skin, colon, and cervix. Vitamin C has been known as a reprogramming enhancer of human and mouse somatic cells. In this study, first we aimed to investigate whether exogenous induction of miR-302/367 in breast cancer cells shows the same tumor suppressive effects previously observed in other cancer cells lines, and whether vitamin C can enhance reprogramming of breast cancer cells and also improve the tumor suppressive function of miR-302/367 cluster. Overexpression of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 breast cancer cells upregulated expression of miR-302/367 members and also some core pluripotency factors including OCT4A, SOX2 and NANOG, induced mesenchymal to epithelial transition, suppressed invasion, proliferation, and induced apoptosis in the both cell lines. However, treatment of the miR-302/367 transfected cells with vitamin C suppressed the expression of pluripotency factors and augmented the tumorigenicity of the breast cancer cells by restoring their proliferative and invasive capacity and compromising the apoptotic effect of miR-302/367. Supplementing the culture medium with vitamin C downregulated expression of TET1 gene which seems to be the reason behind the negative impact of vitamin C on the reprogramming efficiency of miR-302/367 cluster and its anti-tumor effects. Therefore application of vitamin C may not always serve as a reprogramming enhancer depending on its switching function on TET1. This phenomenon should be carefully considered when considering a reprogramming strategy for tumor suppression.  相似文献   

2.
3.
4.
Lung carcinoma is the most common type of malignant tumors globally, and its molecular mechanisms remained unclear. With the aim to investigate the effects of microRNA (miR)-377-5p on the cell development, invasion, metastasis, and cycle of lung carcinoma, this study was performed. We evaluated miR-377-5p expression levels in lung cancer tissues and cell models. Cell viability, proliferation, migration, invasion abilities, and cell cycle distribution were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, crystal violet, transwell, and flow cytometry assay. Furthermore, expression levels of protein kinase B α subunit (AKT1) and proteins related to cell cycle and epithelial-mesenchymal transition (EMT) were assessed using Western blot analysis and quantitative real-time polymerase chain reaction. These results suggested that miR-377-5p was downregulated in vivo and in cell models, and miR-377-5p overexpression inhibited cell viability, proliferation, migration, invasion, and induced cell-cycle arrest. In addition, as a target of miR-377-5p, AKT1 alleviated the decreases of cell viability, proliferation, migration, invasion, the S-phase cells, the expression of cyclin D1, fibronectin, and vimentin, as well as the increases of the G0/G1-phase cells, the expression of Foxo1, p27 kip1, p21 Cip1 and E-cadherin when miR-377-5p overexpressed. In conclusion, miR-377-5p inhibited cell development and regulated cell cycle distribution and EMT by targeting AKT1, which provided a theoretical basis for further study of lung carcinoma therapeutics.  相似文献   

5.
6.
MircroRNA (miRNA)是一段长度约为22个nt的小型非编码RNA,广泛存在于真核生物中,具有调节基因表达的作用。对miRNA的鉴定、功能分析和调控机理研究已成为当今生物领域的热点。miR-302/367cluster属于胚胎干细胞特异性细胞周期调控miRNAs家族成员(embryonic stem cell-specific cell cycle-regulating family of microRNAs,ESCC miRNAs),通常由5个成员miR-302a、miR-302b、miR-302c、miR-302d及miR-367组成,大多分布在脊椎动物中。研究表明,该miRNAs簇对细胞多种生理过程起重要调控作用,如人胚胎干细胞(hESCs)多能性的维持、自我更新等。本研究概述了miRNA的合成及作用机理,ESCC miRNAs促进体细胞再程序化,并总结了miR-302/367 cluster在细胞周期调控、表观遗传修饰及一些细胞信号转导途径中的作用,为采用该类miRNAs诱导体细胞再程序化为iPS细胞(Induced pluripotent stem cells)提供一定的理论基础。  相似文献   

7.
Cervical cancer is a critically malignant tumor with the second mortality of females worldwide. MicroRNAs (miRNAs) are short but regulatory non-coding RNAs playing a pivotal role in many biological processes including tumorigenesis. However, the exact role of miR-140-3p in cervical cancer remains to be elucidated. Here we identified that miR-140-3p was significantly reduced in cervical cancer tissues by comprehensive analysis of TCGA data, hinting that higher expression level of miR-140-3p predicted a good clinical prognosis. Quantitative real-time PCR (RT-qPCR) assay was performed to confirm the negative correlation between miR-140-3p expression level and human cervical cancer tissues as well as various cervical cancer cell lines. To clarify the certain role of miR-140-3p, forced expression by microRNA mimics was applied in Caski and C33A cells, showing that miR-140-3p overexpression significantly impeded the proliferation of cervical cancer cells by cell count kit (CCK-8) assay. Western blot analysis of cell cycle-related proteins Cyclin A, Cyclin B1 and Cyclin D1 have further confirmed the cell cycle arrest was induced by the ectopic expression of miR-140-3p. Annexin-V based FACS analysis also found the simultaneous appearance of early apoptotic cell population in miR-140-3p overexpression cells. The protein level of BCL-2 was attenuated in accompany with elevated Bax and Cleaved caspase-3 protein, indicating miR-140-3p overexpression induced early apoptosis. Mechanistically, we demonstrated that miR-140-3p could target the 3′UTR of RRM2 which has been proved to be highly involved in the onset of cancer. Furthermore, upregulation of miR-140-3p and RRM2 failed to inhibit the proliferation of human cervical cancer cells, revealing that RRM2 served as the target downstream gene of miR-140-3p abolishing its ability as a tumor suppressor. Overall, we figured out the new role of miR-140-3p in cervical cancer and concluded that miR-140-3p was a candidate of cancer control in preclinical.  相似文献   

8.
9.
This study investigated the role of miR-143 in the chemoresistance of osteosarcoma tumor cells and the associated mechanisms. Real-time PCR was used to measure miR-143 levels. Western blot was used to detect protein expression. Cell proliferation was analyzed by MTT assay and Matrigel colony formation assay. Forced miR-143 expression was established by adenoviral vector infection. Cell death was detected by Hoechst33342 staining. Loss of miR-143 expression was observed in osteosarcomas, which correlated with shorter survival of patients with osteosarcomas underlying chemotherapy. In chemoresistant SAOS-2 and U2OS osteosarcomas cells, miR-143 levels were significantly downregulated and accompanied by increases in ATG2B, Bcl-2, and/or LC3-II protein levels, high rate of ALDH1+CD133+ cells, and an increase in Matrigel colony formation ability. H2O2 upregulated p53 and miR-143, but downregulated ATG2B, Bcl-2, and LC3-I expression in U2OS cells (wild-type p53) but not in SAOS-2 (p53-null) cells. Forced miR-143 expression significantly reversed chemoresistance as well as downregulation of ATG2B, LC3-I, and Bcl-2 expression in SAOS-2- and U2OS-resistant cells. Forced miR-143 expression significantly inhibited tumor growth in xenograft SAOS-2-Dox and U2OS-Dox animal models. Loss of miR-143 expression is associated with poor prognosis of patients with osteosarcoma underlying chemotherapy. The chemoresistance of osteosarcoma tumor cells to doxorubicin is associated with the downregulation of miR-143 expression, activation of ALDH1+CD133+ cells, activation of autophagy, and inhibition of cell death. miR-143 may play a crucial role in the chemoresistance of osterosarcoma tumors.  相似文献   

10.
11.
摘要 目的:探讨miR-1-3p在胰腺癌发生发展中的分子机制。方法:以MIA-PaCa-2,SW 1990为研究目标,通过qRT-PCR技术检测miR-1-3p的表达量,利用TargetScan和miRDB数据库预测miR-1-3p的下游靶基因及结合位点,并通过构建双荧光素酶报告基因,进一步确认miR-1-3p与靶基因的结合。利用CCK8细胞增殖实验及平板克隆形成实验检测过表达miR-1-3p及敲低CAPRIN1对细胞增殖的作用;利用流式检测细胞周期;利用蛋白质免疫印迹方法检测miR-1-3p对CAPRIN1及其下游基因的影响;通过流式来确认,过表达miR-1-3p及敲减CAPRIN1基因对细胞周期的影响。结果:miR-1-3p在胰腺癌细胞MIA-PaCa-2,SW 1990中低表达;miR-1-3p直接与CAPRIN1的3''-untranslated region (3''- UTR)结合;过表达miR-1-3p或抑制CAPRIN1基因的表达可明显抑制胰腺癌细胞的增殖能力,同时也产生细胞周期阻滞。结论:miR-1-3p通过抑制CAPRIN1基因表达,而产生细胞周期阻滞进而抑制胰腺癌细胞的增殖能力。  相似文献   

12.
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.  相似文献   

13.
Ever since the technique of coaxing ordinary skin cells into becoming pluripotent stem cells (iPSCs) has been developed, which have the potential to become any cell or tissue in the body, efforts were made to improve the approach because some major challenges. Increasing evidence suggests that several microRNAs (miRNAs) are involved in early embryonic development and embryonic stem cell formation, known as embryonic stem cell (ESC)-specific miRNAs, particularly the miR-302 family. We summarized here a novel approach to generate iPSCs by using miR-302 and its related miRNAs such as miR-367. The development of this miR-302/367-mediated iPSC (termed mirPSC) may provide tools to deal with the obstacles facing some current iPSC reprogramming methods. The mechanism by which miR-302/367 induce iPSC reprogramming is proposed.  相似文献   

14.
15.
Clear cell renal cell carcinoma (ccRCC) is a highly aggressive and common pathological subtype of renal cancer. This cancer is characterized by biallelic inactivation of the von Hippel–Lindau (VHL) tumor suppressor gene, which leads to the accumulation of hypoxia-inducible factors (HIFs). Although therapies targeted at HIFs can significantly improve survival, nearly all patients with advanced ccRCC eventually succumb to the disease. Thus, additional oncogenic events are thought to be involved in the development of ccRCC tumors. In this study, we investigated the role of RASSF6 in ccRCC. Downregulation of RASSF6 was commonly observed in primary tumors relative to matched adjacent normal tissues. Moreover, functional studies established that ectopic re-expression of RASSF6 in ccRCC cells inhibited cell proliferation, clonogenicity, and tumor growth in mice, whereas silencing of RASSF6 dramatically enhanced cell proliferation in vitro and in vivo. Mechanistic investigation suggested that RASSF6 triggers p21Cip1/Waf1 accumulation to induce G1 cell cycle arrest and promote apoptosis upon exposure to pro-apoptotic agents, and both of these mechanisms appear to be mediated by activated JNK signaling. Together, these findings suggest that RASSF6 may play a tumor suppressor role in the progression of ccRCC.  相似文献   

16.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

17.
The Arf tumor suppressor gene product, p19Arf, regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19Arf also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19Arf. Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3′UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53—a well-known effector of p19ArfArf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19Arf and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.  相似文献   

18.
19.
Cervical cancer is the most common gynaecological malignancy, with a high incidence rate and mortality rate in middle-aged women. Human bone marrow mesenchymal stem cells (hBMSCs) have been implicated in the initiation and subsequent development of cancer, along with the involvement of extracellular vesicles (EVs) mediating intracellular communication by delivering microRNAs (miRNAs or miRs). This study is aimed at investigating the physiological mechanisms by which EVs-encapsulated miR-144-3p derived from hBMSCs might mediate the progression of cervical cancer. The expression profiles of centrosomal protein, 55 Kd (CEP55) and miR-144-3p in cervical cancer cell lines and tissues, were quantified by RT-qPCR and Western blot analysis. The binding affinity between miR-144-3p and CEP55 was identified using in silico analysis and luciferase activity determination. Cervical cancer cells were co-cultured with EVs derived from hBMSCs that were treated with either miR-144-3p mimic or miR-144-3p inhibitor. Cervical cancer cell proliferation, invasion, migration and apoptosis were detected in vitro. The effects of hBMSCs-miR-144-3p on tumour growth were also investigated in vivo. miR-144-3p was down-regulated, whereas CEP55 was up-regulated in cervical cancer cell lines and tissues. CEP55 was targeted by miR-144-3p, which suppressed cervical cancer cell proliferation, invasion and migration and promoted apoptosis via CEP55. Furthermore, similar results were obtained by hBMSCs-derived EVs carrying miR-144-3p. In vivo assays confirmed the tumour-suppressive effects of miR-144-3p in hBMSCs-derived EVs on cervical cancer. Collectively, hBMSCs-derived EVs-loaded miR-144-3p impedes the development and progression of cervical cancer through target inhibition of CEP55, therefore providing us with a potential therapeutic target for treating cervical cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号